
Stochastic Complexity via Two Part Codes

Dror Baron

This supplement provides more details about Question 2 in Homework 1.

General setting: The aim of this question is to demonstrate numerically that model classes
should contain O(

√
N) representation levels per parameter. This result provides plenty

of insights about the stochastic complexity. In particular, because coding length has the
following relation to probability,

len = − log2(p), (1)

then we can think of each parameter as requiring roughly 1
2

log2(N) bits. With K parameters,
we will need K

2
log2(N) +O(K) bits.

To show this result numerically, we consider a two part code. To keep things simple, we
discuss length-N strings over a binary alphabet, i.e., X ∈ {0, 1}N . We will now construct a
two part code. A two part code contains two parts.

1. The first part estimates the parameter(s) governing the data, and encodes
them. In our example, we will model the bits in X as independent and identically
distributed (i.i.d.), which you can think of as biased coin tosses. Each bit Xn, n ∈
{1, . . . , N}, will have value 1 with probability θ and value 0 with probability 1 − θ.
However, the parameter θ is unknown. Therefore, we estimate θ by first counting the
number of ones and zeros in the data as follows,

N0 =
N∑
n=1

1{Xn=0} and N1 =
N∑
n=1

1{Xn=1},

where 1{·} is an indicator function that takes the value 1 when the condition is true,

else 0, and then we divide N1 by N to obtain the estimated parameter θ̂,

θ̂ =
N1

N0 +N1

=
N1

N
.

It is readily seen that 1 − θ̂ = N0

N
. Having computed θ̂, it would be nice to use it to

encode (compress) X. However, we are at the encoder, and we know θ̂, but the decoder

does not know its value, and we must encode θ̂ somehow. Note that there are N + 1
possible values of θ̂, because N0, N1 ∈ {0, 1, . . . , N}. So in principle we could encode

θ̂ precisely using log2(N + 1) bits. However, this question will demonstrate that it is
better to use fewer representation levels.

1

Consider K representation levels. The quantizer will partition θ̂ into one of K bins,
where Bin 1 corresponds to θ̂ ∈ [0, 1

K
), Bin 2 corresponds to θ̂ ∈ [1

K
, 2
K

), up to

Bin K, which corresponds to θ̂ ∈ [K−1
K
, K
K

] = [1 − 1
K
, 1]. Once we have identified

bin k ∈ {1, . . . , K}, we encode k using log2(K) bits. Finally, bin k corresponds to a
representation level (also known as the quantization level) in the middle of the bin. It
is easily seen that representation level rk in bin k takes the value

rk =
k − 1

2

K
.

Note that we have used a uniform quantizer, and moreover having representation levels
in the middle simplifies our implementation. It can be seen that non-uniform quantiza-
tion of θ̂ can have some beneficial properties; particularly eager students may want to
browse through B. S. Clarke and A. R. Barron, “Jeffreys’ prior is asymptotically least
favorable under entropy risk,” J. Statistical Planning Inference, 1994 or J. Rissanen,
“Fisher information and stochastic complexity,” IEEE Trans. Information Theory,
1996. (This direction may even be good for an individual project.)

2. The second part compresses the string X with probablity model rk. When
the compressor will encounter a 0 in X, i.e., x0, it will assign probability 1 − rk to
xn. Similarly, when xn = 1 the compressor will assign probability rk. Therefore, when
xn = 0 the coding length will be − log2(1 − rk) bits, and when xn = 1 it will be
− log2(rk) bits. The total coding length for compressing X in the second part of the
two part code using quantized parameter rk will be

lenrk(X) = −
N∑
n=1

[
1{xn=0} · log2(1− rk) + 1{xn=1} · log2(rk)

]
= −N0 log2(1− rk)−N1 log2(rk)

= −N(1− θ̂) log2(1− rk)−Nθ̂ log2(rk). (2)

At this point, the astute student may have noticed that log2(rk) and log2(1− rk) may
be non-integer. For example, if rk = 0.25, then − log2(rk) = 2 bits, but − log2(1−rk) =
0.415 bits, which is non-integer. While it is probably clear how a 1 can be encoded
using 2 bits, it is not clear how a 0 could be encoded using 0.415 bits. It turns out that a
well-known technique called arithmetic coding can process such problems. Arithmetic
coding proceeds symbol by symbol; first it processes x1, then x2, and so on. As it
processes each bit, it outputs bits in order to allow the decoder to decode the bits
that have appeared at the input so far. Therefore, while some xn may yield multiple
bits at the output, other values may not yield any additional bits at the output. This
happens when xn has relatively high probability (in our case, the probability for 0
was 0.75). An early paper about arithmetic coding is J. Rissanen and G. Langdon,
“Arithmetic coding,” IBM J. Research Development, 1978. A well written tutorial is
I. H. Witten, R. M. Neal, and J. G, Cleary, “Arithmetic coding for data compression,”
Comm. ACM, 1987. (Again, arithmetic coding could certainly feed into an individual
project.) The bottom line is that once the arithmetic encoder has processed all of X,

2

it outputs − log(Pr(X)) +O(1) bits, where the O(1) term is often 2–3 bits. Therefore,
practically speaking the coding length lenrk(X) of the second part of the two part code
can be achieved.

It might add intuition to think in terms of the probability for the entire sequence X,

Pr(X) =
N∏
n=1

Pr(xn),

where the equality is due to symbols of xn being independent. Because the coding
length is proportional to the log of the probability (1),

len(X) = − log2(Pr(X)) = −
N∑
n=1

log2(Pr(xn)),

which corresponds to (2).

Having developed our two part code and discussed it in detail, what is the entire coding
length of both parts? Recall that the first part encodes log2(K) bits, and the second encodes

lenrk(X) = −N(1− θ̂) log2(1− rk)−Nθ̂ log2(rk) bits (2). Therefore, the total coding length
is

log2(K)−N(1− θ̂) log2(1− rk)−Nθ̂ log2(rk).

In contrast, suppose that we somehow knew the true parameter θ. In that case, we could
compress X at its entropy,

H(θ) = −θ log2(θ)− (1− θ) log2(1− θ).

We do not know θ, of course. But the encoder knows θ̂, which can be interpreted as the
empirical parameter. The decoder only knows a quantized version of θ̂, but suppose somehow
that it could compress X with any parameter. It can be shown that the lowest coding length
is obtained using θ̂, resulting in coding length NH(θ̂). This coding length serves as a best-
possible benchmark.

As a quick example, suppose that θ̂ = 0.2, N = 1000, and rk = 0.21. Because N = 1000, we
have N1 = Nθ̂ = 200 and N0 = N −N1 = 800. The entropy is

H(0.2) = −0.2 log2(0.2)− 0.8 log2(0.8) = 0.7219,

yielding the benchmark coding length NH(0.2) = 721.9 bits. It can be seen that NH(θ̂) =
lenθ̂(X). However, our arithmetic coder compresses with quantized representation level rk,
and

lenrk(X) = −800 log2(1− 0.21)− 200 log2(0.21) = 722.4

bits. It can be seen that the quantized representation level slightly increases the coding
length beyond the benchmark entropy.

3

Finally, we compute the redundancy or overhead of the two part code by subtracting the
benchmark coding length from the total coding length of both parts,

R(X, θ̂) =
[
log2(K)−N(1− θ̂) log2(1− rk)−Nθ̂ log2(rk)

]
−
[
NH(θ̂)

]
= log2(K) +N(1− θ̂)[− log2(1− rk) + log2(1− θ̂)] +Nθ̂[− log2(rk) + log2(θ̂)]

= log2(K) +N(1− θ̂) log2

(
1− θ̂
1− rk

)
+Nθ̂ log2

(
θ̂

rk

)
.

Examining the redundancy for various values of θ̂ and K will show that K = Θ(
√
N)

has reasonably low redundancy levels. In particular, the first part of the code expends
1
2

log2(N) + O(1) bits to encode the bin index k, and the second part expends O(1) bits
above the benchmark coding length.

4

