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Abstract—Compressive sensing (CS) is an emerging field based
on the revelation that a small collection of linear projections of a
sparse signal contains enough information for stable, sub-Nyquist
signal acquisition. When a statistical characterization of the signal
is available, Bayesian inference can complement conventional CS
methods based on linear programming or greedy algorithms. We
perform asymptotically optimal Bayesian inference using belief
propagation (BP) decoding, which represents the CS encoding
matrix as a graphical model. Fast computation is obtained by
reducing the size of the graphical model with sparse encoding
matrices. To decode a length- signal containing large co-
efficients, our CS-BP decoding algorithm uses � ���� ��
measurements and � ����� �� computation. Finally, al-
though we focus on a two-state mixture Gaussian model, CS-BP is
easily adapted to other signal models.

Index Terms—Bayesian inference, belief propagation, compres-
sive sensing, fast algorithms, sparse matrices.

I. INTRODUCTION

M ANY signal processing applications require the identi-
fication and estimation of a few significant coefficients

from a high-dimensional vector. The wisdom behind this is the
ubiquitous compressibility of signals: in an appropriate basis,
most of the information contained in a signal often resides in
just a few large coefficients. Traditional sensing and processing
first acquires the entire data, only to later throw away most coef-
ficients and retain the few significant ones [2]. Interestingly, the
information contained in the few large coefficients can be cap-
tured (encoded) by a small number of random linear projections
[3]. The ground-breaking work in compressive sensing (CS)
[4]–[6] has proved for a variety of settings that the signal can
then be decoded in a computationally feasible manner from
these random projections.

Manuscript received December 25, 2008; accepted June 16, 2009. First
published July 21, 2009; current version published December 16, 2009. The
associate editor coordinating the review of this manuscript and approving it for
publication was Dr. Markus Pueschel. This work was supported by the Grants
NSF CCF-0431150 and CCF-0728867, DARPA/ONR N66001-08-1-2065,
ONR N00014-07-1-0936 and N00014-08-1-1112, AFOSR FA9550-07-1-0301,
ARO MURI W311NF-07-1-0185, and the Texas Instruments Leadership Uni-
versity Program. A preliminary version of this work appeared in the technical
report [1].

D. Baron is with the Department of Electrical Engineering, Technion-Israel
Institute of Technology, Haifa 32000, Israel (e-mail: drorb@ee.technion.ac.il).

S. Sarvotham is with Halliburton Energy Services, Houston, TX 77032 USA
(e-mail: shriram.sarvotham@halliburton.com).

R. G. Baraniuk is with the Department of Electrical and Computer Engi-
neering, Rice University, Houston, TX 77005 USA (e-mail: richb@rice.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2009.2027773

A. Compressive Sensing

Sparsity and Random Encoding: In a typical compressive
sensing (CS) setup, a signal vector has the form

, where is an orthonormal basis, and
satisfies .1 Owing to the sparsity of relative
to the basis , there is no need to sample all values of .
Instead, the CS theory establishes that can be decoded from
a small number of projections onto an incoherent set of mea-
surement vectors [4], [5]. To measure (encode) , we compute

linear projections of via the matrix-vector multipli-
cation where is the encoding matrix.

In addition to strictly sparse signals where , other
signal models are possible. Approximately sparse signals have

large coefficients, while the remaining coefficients are
small but not necessarily zero. Compressible signals have coef-
ficients that, when sorted, decay quickly according to a power
law. Similarly, both noiseless and noisy signals and measure-
ments may be considered. We emphasize noiseless measure-
ment of approximately sparse signals in the paper.

Decoding via Sparsity: Our goal is to decode given and .
Although decoding from appears to be an ill-posed
inverse problem, the prior knowledge of sparsity in enables
to decode from measurements. Decoding often re-
lies on an optimization, which searches for the sparsest coeffi-
cients that agree with the measurements . If is sufficiently
large and is strictly sparse, then is the solution to the
minimization:

Unfortunately, solving this optimization is NP-complete [7].
The revelation that supports the CS theory is that a computa-

tionally tractable optimization problem yields an equivalent so-
lution. We need only solve for the -sparsest coefficients that
agree with the measurements [4], [5]

(1)

as long as satisfies some technical conditions, which
are satisfied with overwhelming probability when the en-
tries of are independent and identically distributed (i.i.d.)
sub-Gaussian random variables [4]. This optimization
problem (1), also known as Basis Pursuit [8], can be solved
with linear programming methods. The decoder requires
only projections [9], [10]. However,

1We use � � � to denote the � “norm” that counts the number of nonzero
elements.
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encoding by a dense Gaussian is slow, and decoding
requires cubic computation in general [11].

B. Fast CS Decoding

While decoders figure prominently in the CS literature,
their cubic complexity still renders them impractical for many
applications. For example, current digital cameras acquire im-
ages with pixels or more, and fast decoding is critical.
The slowness of decoding has motivated a flurry of research
into faster algorithms.

One line of research involves iterative greedy algorithms. The
Matching Pursuit (MP) [12] algorithm, for example, iteratively
selects the vectors from the matrix that contain most of the
energy of the measurement vector . MP has been proven to
successfully decode the acquired signal with high probability
[12], [13]. Algorithms inspired by MP include OMP [12], tree
matching pursuit [14], stagewise OMP [15], CoSaMP [16], IHT
[17], and Subspace Pursuit [18] have been shown to attain sim-
ilar guarantees to those of their optimization-based counterparts
[19]–[21].

While the CS algorithms discussed above typically use a
dense matrix, a class of methods has emerged that employ
structured . For example, subsampling an orthogonal basis
that admits a fast implicit algorithm also leads to fast decoding
[4]. Encoding matrices that are themselves sparse can also be
used. Cormode and Muthukrishnan proposed fast streaming
algorithms based on group testing [22], [23], which considers
subsets of signal coefficients in which we expect at most one
“heavy hitter” coefficient to lie. Gilbert et al. [24] propose the
Chaining Pursuit algorithm, which works best for extremely
sparse signals.

C. Bayesian CS

CS decoding algorithms rely on the sparsity of the signal .
In some applications, a statistical characterization of the signal
is available, and Bayesian inference offers the potential for
more precise estimation of or a reduction in the number of
CS measurements. Ji et al. [25] have proposed a Bayesian CS
framework where relevance vector machines are used for signal
estimation. For certain types of hierarchical priors, their method
can approximate the posterior density of and is somewhat
faster than decoding. Seeger and Nickisch [26] extend these
ideas to experimental design, where the encoding matrix is
designed sequentially based on previous measurements. An-
other Bayesian approach by Schniter et al. [27] approximates
conditional expectation by extending the maximal likelihood
approach to a weighted mixture of the most likely models.
There are also many related results on application of Bayesian
methods to sparse inverse problems (cf. [28] and references
therein).

Bayesian approaches have also been used for multiuser de-
coding (MUD) in communications. In MUD, users modulate
their symbols with different spreading sequences, and the re-
ceived signals are superpositions of sequences. Because most
users are inactive, MUD algorithms extract information from
a sparse superposition in a manner analogous to CS decoding.

Guo and Wang [29] perform MUD using sparse spreading se-
quences and decode via belief propagation (BP) [30]–[35]; our
paper also uses sparse encoding matrices and BP decoding. A
related algorithm for decoding low density lattice codes (LDLC)
by Sommer et al. [36] uses BP on a factor graph whose self and
edge potentials are Gaussian mixtures. Convergence results for
the LDLC decoding algorithm have been derived for Gaussian
noise [36].

D. Contributions

In this paper, we develop a sparse encoder matrix and a
belief propagation (BP) decoder to accelerate CS encoding and
decoding under the Bayesian framework. We call our algorithm
CS-BP. Although we emphasize a two-state mixture Gaussian
model as a prior for sparse signals, CS-BP is flexible to varia-
tions in the signal and measurement models.

Encoding by Sparse CS Matrix: The dense sub-Gaussian
CS encoding matrices [4], [5] are reminiscent of Shannon’s
random code constructions. However, although dense matrices
capture the information content of sparse signals, they may not
be amenable to fast encoding and decoding. Low density parity
check (LDPC) codes [37], [38] offer an important insight:
encoding and decoding are fast, because multiplication by a
sparse matrix is fast; nonetheless, LDPC codes achieve rates
close to the Shannon limit. Indeed, in a previous paper [39], we
used an LDPC-like sparse for the special case of noiseless
measurement of strictly sparse signals; similar matrices were
also proposed for CS by Berinde and Indyk [40]. Although
LDPC decoding algorithms may not have provable conver-
gence, the recent extension of LDPC to LDLC codes [36] offers
provable convergence. Additionally, CS-BP has recently been
proved to be asymptotically optimal in the large system limit
[29], [60].

We encode (measure) the signal using sparse Rademacher
LDPC-like matrices. Because entries of are

restricted to , encoding only requires sums and dif-
ferences of small subsets of coefficient values of . The design
of , including characteristics such as column and row weights,
is based on the relevant signal and measurement models, as well
as the accompanying decoding algorithm.

Decoding by BP: We represent the sparse as a sparse
bipartite graph. In addition to accelerating the algorithm, the
sparse structure reduces the number of loops in the graph and
thus assists the convergence of a message passing method
that solves a Bayesian inference problem. Our estimate for

explains the measurements while offering the best match
to the prior. We employ BP in a manner similar to LDPC
channel decoding [34], [37], [38]. To decode a length- signal
containing large coefficients, our CS-BP decoding algorithm
uses measurements and
computation. Although CS-BP is not guaranteed to converge,
numerical results are quite favorable.

The remainder of the paper is organized as follows. Section II
defines our signal model, and Section III describes our sparse
CS-LDPC encoding matrix. The CS-BP decoding algorithm is
described in Section IV, and its performance is demonstrated
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Fig. 1. Mixture Gaussian model for signal coefficients. The distribution of �
conditioned on the two state variables, � � � and � � �, is depicted. Also
shown is the overall distribution for � .

numerically in Section V. Variations and applications are dis-
cussed in Section VI, and Section VII concludes.

II. MIXTURE GAUSSIAN SIGNAL MODEL

We focus on a two-state mixture Gaussian model [41]–[43]
as a prior that succinctly captures our prior knowledge about
approximate sparsity of the signal. Bayesian inference using
a two-state mixture model has been studied well before
the advent of CS, for example by George and McCulloch
[44] and Geweke [45]; the model was proposed for CS in
[1] and also used by He and Carin [46]. More formally, let

be a random vector in , and
consider the signal as an outcome of

. Because our approximately sparse signal consists of a
small number of large coefficients and a large number of small
coefficients, we associate each probability density function
(pdf) with a state variable that can take on two
values. Large and small magnitudes correspond to zero mean
Gaussian distributions with high and low variances, which are
implied by and , respectively,

with . Let be the state random
vector associated with the signal; the actual configuration

is one of possible outcomes.
We assume that the ’s are i.i.d.2 To ensure that we have
approximately large coefficients, we choose the probability
mass function (pmf) of the state variable to be Bernoulli
with and , where

is the sparsity rate.
The resulting model for signal coefficients is a two-state mix-

ture Gaussian distribution, as illustrated in Fig. 1. This mixture
model is completely characterized by three parameters: the spar-
sity rate and the variances and of the Gaussian pdf’s
corresponding to each state.

Mixture Gaussian models have been successfully employed
in image processing and inference problems, because they are
simple yet effective in modeling real-world signals [41]–[43].
Theoretical connections have also been made between wavelet
coefficient mixture models and the fundamental parameters
of Besov spaces, which have proved invaluable for character-
izing real-world images. Moreover, arbitrary densities with a
finite number of discontinuities can be approximated arbitrarily

2The model can be extended to capture dependencies between coefficients, as
suggested by Ji et al. [25].

Fig. 2. Factor graph depicting the relationship between variable nodes (black)
and constraint nodes (white) in CS-BP.

closely by increasing the number of states and allowing nonzero
means [47]. We leave these extensions for future work, and
focus on two-state mixture Gaussian distributions for modeling
the signal coefficients.

III. SPARSE ENCODING

Sparse CS Encoding Matrix: We use a sparse matrix to
accelerate both CS encoding and decoding. Our CS encoding
matrices are dominated by zero entries, with a small number of
nonzeros in each row and each column. We focus on CS-LDPC
matrices whose nonzero entries are 3; each measure-
ment involves only sums and differences of a small subset of
coefficients of . Although the coherence between a sparse
and , which is the maximal inner product between rows of
and , may be higher than the coherence using a dense ma-
trix [48], as long as is not too sparse (see Theorem 1 below)
the measurements capture enough information about to de-
code the signal. A CS-LDPC can be represented as a bipartite
graph , which is also sparse. Each edge of connects a coef-
ficient node to an encoding node and corresponds to
a nonzero entry of (Fig. 2).

In addition to the core structure of , we can introduce
other constraints to tailor the measurement process to the
signal model. The constant row weight constraint makes sure
that each row of contains exactly nonzero entries. The
row weight can be chosen based on signal properties such
as sparsity, possible measurement noise, and details of the
decoding process. Another option is to use a constant column
weight constraint, which fixes the number of nonzero entries in
each column of to be a constant .

Although our emphasis is on noiseless measurement of
approximately sparse signals, we briefly discuss noisy mea-
surement of a strictly sparse signal, and show that a constant
row weight ensures that the measurements are approximated
by two-state mixture Gaussians. To see this, consider a strictly

3CS-LDPC matrices are slightly different from LDPC parity check matrices,
which only contain the binary entries 0 and 1. We have observed numerically
that allowing negative entries offers improved performance. At the expense of
additional computation, further minor improvement can be attained using sparse
matrices with Gaussian nonzero entries.
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sparse with sparsity rate and Gaussian variance . We
now have , where is additive white
Gaussian noise (AWGN) with variance . In our approxi-
mately sparse setting, each row of picks up small
magnitude coefficients. If , then the few large
coefficients will be obscured by similar noise artifacts.

Our definition of relies on the implicit assumption that
is sparse in the canonical sparsifying basis, i.e., . In con-
trast, if is sparse in some other basis , then more complicated
encoding matrices may be necessary. We defer the discussion of
these issues to Section VI, but emphasize that in many practical
situations our methods can be extended to support the sparsi-
fying basis in a computationally tractable manner.

Information Content of Sparsely Encoded Measurements:
The sparsity of our CS-LDPC matrix may yield measurements

that contain less information about the signal than a dense
Gaussian . The following theorem, whose proof appears in
the Appendix, verifies that retains enough information to
decode well. As long as , then

measurements are sufficient.
Theorem 1: Let be a two-state mixture Gaussian signal

with sparsity rate and variances and , and
let be a CS-LDPC matrix with constant row weight

, where . If

(2)

then can be decoded to such that with
probability .

The proof of Theorem 1 relies on a result by Wang et al. ([49],
Theorem 1). Their proof partitions into submatrices of

rows each, and estimates each as a median of inner prod-
ucts with submatrices. The performance guarantee relies on
the union bound; a less stringent guarantee yields a reduction
in . Moreover, can be reduced if we increase the number
of measurements accordingly. Based on numerical results, we
propose the following modified values as rules of thumb:

(3)

Noting that each measurement requires additions
and subtractions, and using our rules of thumb for
and (3), the computation required for encoding is

, which is significantly lower than
the required for dense Gaussian

. In addition to Theorem 1, recent results indicate that there
is no loss of optimality with respect to any random matrix
distribution when using a sparse CS-LDPC matrix [29], [60];
CS-BP is asymptotically optimal in the large system limit.

IV. CS-BP DECODING OF APPROXIMATELY SPARSE SIGNALS

Decoding approximately sparse random signals can be
treated as a Bayesian inference problem. We observe the mea-
surements , where is a mixture Gaussian signal. Our
goal is to estimate given and . Because the set of equa-
tions is under-determined, there are infinitely many

solutions. All solutions lie along a hyperplane of dimension
. We locate the solution within this hyperplane that

best matches our prior signal model. Consider the minimum
mean-square error (MMSE) and maximum a posteriori (MAP)
estimates:

where the expectation is taken over the prior distribution for
. The MMSE estimate can be expressed as the conditional

mean, , where is the random
vector that corresponds to the measurements. Although the pre-
cise computation of may require the evaluation of
terms, a close approximation to the MMSE estimate can be ob-
tained using the (usually small) set of state configuration vectors

with dominant posterior probability [27]. Indeed, exact infer-
ence in graphical models is NP-hard [50], because of loops in
the graph induced by . However, the sparse structure of re-
duces the number of loops and enables us to use low-complexity
message-passing methods to estimate approximately.

A. Decoding Algorithm

We now employ belief propagation (BP), an efficient method
for solving inference problems by iteratively passing messages
over graphical models [30]–[35]. Although BP has not been
proved to converge, for graphs with few loops it often offers
a good approximation to the solution to the MAP inference
problem. BP relies on factor graphs, which enable fast compu-
tation of global multivariate functions by exploiting the way in
which the global function factors into a product of simpler local
functions, each of which depends on a subset of variables [51].

Factor Graph for CS-BP: The factor graph shown in Fig. 2
captures the relationship between the states , the signal coef-
ficients , and the observed CS measurements . The graph is
bipartite and contains two types of vertices; all edges connect
variable nodes (black) and constraint nodes (white). There are
three types of variable nodes corresponding to state variables

, coefficient variables , and measurement variables
. The factor graph also has three types of constraint nodes,

which encapsulate the dependencies that their neighbors in the
graph (variable nodes) are subjected to. First, prior constraint
nodes impose the Bernoulli prior on state variables. Second,
mixing constraint nodes impose the conditional distribution on
coefficient variables given the state variables. Third, encoding
constraint nodes impose the encoding matrix structure on
measurement variables.

Message Passing: CS-BP approximates the marginal distri-
butions of all coefficient and state variables in the factor graph,
conditioned on the observed measurements , by passing mes-
sages between variable nodes and constraint nodes. Each mes-
sage encodes the marginal distributions of a variable associated
with one of the edges. Given the distributions
and , one can extract MAP and MMSE esti-
mates for each coefficient.

Denote the message sent from a variable node to one of
its neighbors in the bipartite graph, a constraint node , by

; a message from to is denoted by .
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The message is updated by taking the product of
all messages received by on all other edges. The message

is computed in a similar manner, but the constraint
associated with is applied to the product and the result is
marginalized. More formally,

(4)

(5)

where and are sets of neighbors of and , respec-
tively, is the constraint on the set of variable nodes

, and is the set of neighbors of excluding . We in-
terpret these 2 types of message processing as multiplication of
beliefs at variable nodes (4) and convolution at constraint nodes
(5). Finally, the marginal distribution for a given variable
node is obtained from the product of all the most recent in-
coming messages along the edges connecting to that node,

(6)

Based on the marginal distribution, various statistical character-
izations can be computed, including MMSE, MAP, error bars,
and so on.

We also need a method to encode beliefs. One method
is to sample the relevant pdf’s uniformly and then use the
samples as messages. Another encoding method is to approx-
imate the pdf by a mixture Gaussian with a given number of
components, where mixture parameters are used as messages.
These two methods offer different trade-offs between modeling
flexibility and computational requirements; details appear in
Sections IV-B and IV-C. We leave alternative methods such as
particle filters and importance sampling for future research.

Protecting Against Loopy Graphs and Message Quantiza-
tion Errors: BP converges to the exact conditional distribution
in the ideal situation where the following conditions are met:
i) the factor graph is cycle-free; and ii) messages are processed
and propagated without errors. In CS-BP decoding, both condi-
tions are violated. First, the factor graph is loopy—it contains
cycles. Second, message encoding methods introduce errors.
These nonidealities may lead CS-BP to converge to imprecise
conditional distributions, or more critically, lead CS-BP to di-
verge [52]–[54]. To some extent these problems can be reduced
by i) using CS-LDPC matrices, which have a relatively modest
number of loops; and ii) carefully designing our message en-
coding methods (Sections IV-B and IV-C). We stabilize CS-BP
against these nonidealities using message damped belief prop-
agation (MDBP) [55], where messages are weighted averages
between old and new estimates. Despite the damping, CS-BP
is not guaranteed to converge, and yet the numerical results of
Section V demonstrate that its performance is quite promising.
We conclude with a prototype algorithm; Matlab code is avail-
able at http://dsp.rice.edu/CSBP.

CS-BP Decoding Algorithm:
1) Initialization: Initialize the iteration counter . Set

up data structures for factor graph messages and

. Initialize messages from variable to
constraint nodes with the signal prior.

2) Convolution: For each measurement , which
corresponds to constraint node , compute via
convolution (5) for all neighboring variable nodes . If
measurement noise is present, then convolve further with a
noise prior. Apply damping methods such as MDBP [55]
by weighting the new estimates from iteration with esti-
mates from previous iterations.

3) Multiplication: For each coefficient , which
corresponds to a variable node , compute via
multiplication (4) for all neighboring constraint nodes

. Apply damping methods as needed. If the iteration
counter has yet to reach its maximal value, then go to Step
2.

4) Output: For each coefficient , compute
MMSE or MAP estimates (or alternative statistical char-
acterizations) based on the marginal distribution (6).
Output the requisite statistics.

B. Samples of the PDF as Messages

Having described main aspects of the CS-BP decoding algo-
rithm, we now focus on the two message encoding methods,
starting with samples. In this method, we sample the pdf and
send the samples as messages. Multiplication of pdf’s (4) cor-
responds to point-wise multiplication of messages; convolution
(5) is computed efficiently in the frequency domain.4

The main advantage of using samples is flexibility to dif-
ferent prior distributions for the coefficients; for example, mix-
ture Gaussian priors are easily supported. Additionally, both
multiplication and convolution are computed efficiently. How-
ever, sampling has large memory requirements and introduces
quantization errors that reduce precision and hamper the conver-
gence of CS-BP [52]. Sampling also requires finer sampling for
precise decoding; we propose to sample the pdf’s with a spacing
less than .

We analyze the computational requirements of this method.
Let each message be a vector of samples. Each iteration per-
forms multiplication at coefficient nodes (4) and convolution at
constraint nodes (5). Outgoing messages are modified,

(7)

where the denominators are nonzero, because mixture Gaussian
pdf’s are strictly positive. The modifications (7) reduce com-
putation, because the numerators are computed once and then
reused for all messages leaving the node being processed.

Assuming that the column weight is fixed (Section III),
the computation required for message processing at a variable
node is per iteration, because we multiply vectors
of length . With variable nodes, each iteration requires

4Fast convolution via FFT has been used in LDPC decoding over �� �� �
using BP [34].
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computation. For constraint nodes, we perform con-
volution in the frequency domain, and so the computational cost
per node is . With constraint nodes, each
iteration is . Accounting for both variable and
constraint nodes, each iteration is

, where we employ our rules of thumb for
, and (3). To complete the computational analysis, we

note first that we use CS-BP iterations, which is pro-
portional to the diameter of the graph [56]. Second, sampling the
pdf’s with a spacing less than , we choose to
support a maximal amplitude on the order of . Therefore, our
overall computation is , which
scales as when and are constant.

C. Mixture Gaussian Parameters as Messages

In this method, we approximate the pdf by a mixture Gaussian
with a maximum number of components, and then send the
mixture parameters as messages. For both multiplication (4)
and convolution (5), the resulting number of components in the
mixture is multiplicative in the number of constituent compo-
nents. To keep the message representation tractable, we perform
model reduction using the Iterative Pairwise Replacement Al-
gorithm (IPRA) [57], where a sequence of mixture models is
computed iteratively.

The advantage of using mixture Gaussians to encode pdf’s is
that the messages are short and hence consume little memory.
This method works well for mixture Gaussian priors, but could
be difficult to adapt to other priors. Model order reduction al-
gorithms such as IPRA can be computationally expensive [57],
and introduce errors in the messages, which impair the quality
of the solution as well as the convergence of CS-BP [52].

Again, we analyze the computational requirements. Be-
cause it is impossible to undo the multiplication in (4)
and (5), we cannot use the modified form (7). Let be
the maximum model order. Model order reduction using
IPRA [57] requires computation per coeffi-
cient node per iteration. With coefficient nodes,
each iteration is . Similarly, with con-
straint nodes, each iteration is . Accounting
for CS-BP iterations, overall computation is

.

D. Properties of CS-BP Decoding

We briefly describe several properties of CS-BP decoding.
The computational characteristics of the two methods for en-
coding beliefs about conditional distributions were evaluated in
Sections IV-B and IV-C. The storage requirements are mainly
for message representation of the edges.
For encoding with pdf samples, the message length is , and so
the storage requirement is . For encoding with
mixture Gaussian parameters, the message length is , and so
the storage requirement is . Computational and
storage requirements are summarized in Table I.

Several additional properties are now featured. First, we have
progressive decoding; more measurements will improve the pre-
cision of the estimated posterior probabilities. Second, if we are
only interested in an estimate of the state configuration vector

but not in the coefficient values, then less information must

TABLE I
COMPUTATIONAL AND STORAGE REQUIREMENTS OF CS-BP DECODING

Fig. 3. MMSE as a function of the number of measurements� using different
matrix row weights �. The dashed lines show the � norms of � (top) and the
small coefficients (bottom). (� � ����� � � ���� 	 � ��� 	 � �, and
noiseless measurements.)

be extracted from the measurements. Consequently, the number
of measurements can be reduced. Third, we have robustness to
noise, because noisy measurements can be incorporated into our
model by convolving the noiseless version of the estimated pdf
(5) at each encoding node with the pdf of the noise.

V. NUMERICAL RESULTS

To demonstrate the efficacy of CS-BP, we simulated several
different settings. In our first setting, we considered decoding
problems where , and the
measurements are noiseless. We used samples of the pdf as mes-
sages, where each message consisted of sam-
ples; this choice of provided fast FFT computation. Fig. 3 plots
the MMSE decoding error as a function of for a variety of
row weights . The figure emphasizes with dashed lines the av-
erage norm of (top) and of the small coefficients (bottom);
increasing reduces the decoding error, until it reaches the en-
ergy level of the small coefficients. A small row weight, e.g.,

, may miss some of the large coefficients and is thus
bad for decoding; as we increase , fewer measurements are
needed to obtain the same precision. However, there is an op-
timal beyond which any performance gains
are marginal. Furthermore, values of give rise to
divergence in CS-BP, even with damping. An example of the
output of the CS-BP decoder and how it compares to the signal

appears in Fig. 4, where we used and . Al-
though , we only plotted the first 100 signal values

for ease of visualization.
To compare the performance of CS-BP with other CS de-

coding algorithms, we also simulated: i) decoding (1) via
linear programming; ii) GPSR [20], an optimization method that
minimizes ; iii) CoSaMP [16], a fast greedy
solver; and iv) IHT [17], an iterative thresholding algorithm. We
simulated all five methods where

, and the measurements are noise-
less. Throughout the experiment we ran the different methods
using the same CS-LDPC encoding matrix , the same signal

, and therefore same measurements . Fig. 5 plots the MMSE
decoding error as a function of for the five methods. For
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Fig. 4. Original signal � and version decoded by CS-BP. (� � ����� � �

���� � � ���� � ���� � � ��� � � �, and noiseless measurements.)

Fig. 5. MMSE as a function of the number of measurements � using CS-BP,
linear programming (LP), GPSR, CoSaMP, and IHT. The dashed lines show
the 	 norms of � (top) and the small coefficients (bottom). (� � ������ �

���� � � ��� � � ��� � � �, and noiseless measurements.)

Fig. 6. Run-time in seconds as a function of the signal length � using
CS-BP, linear programming (LP) 	 decoding, GPSR, CoSaMP, and IHT.
(� � ���� � � ���� � ������ � ��� � � �, and noiseless measure-
ments.)

small to moderate , CS-BP exploits its knowledge about the
approximately sparse structure of , and has a smaller decoding
error. CS-BP requires 20%–30% fewer measurements than the
optimization methods LP and GPSR to obtain the same MMSE
decoding error; the advantage over the greedy solvers IHT and
CoSaMP is even greater. However, as increases, the advan-
tage of CS-BP over LP and GPSR becomes less pronounced.

To compare the speed of CS-BP to other methods, we ran
the same five methods as before. In this experiment, we varied
the signal length from 100 to 10 000, where

, and the measurements are noise-
less. We mention in passing that some of the algorithms that
were evaluated can be accelerated using linear algebra routines
optimized for sparse matrices; the improvement is quite modest,
and the run-times presented here do not reflect this optimiza-
tion. Fig. 6 plots the run-times of the five methods in seconds
as a function of . It can be seen that LP scales more poorly
than the other algorithms, and so we did not simulate it for

Fig. 7. MMSE as a function of � using different noise levels � . The dashed
lines show the 	 norms of � (top) and the small coefficients (bottom). (� �

������ � ���� � � ��� � � ��, and � � �.)

.5 CoSaMP also seems to scale relatively poorly, although
it is possible that our conjugate gradient implementation can be
improved using the pseudo-inverse approach instead [16]. The
run-times of CS-BP seem to scale somewhat better than IHT
and GPSR. Although the asymptotic computational complexity
of CS-BP is good, for signals of length it is still
slower than IHT and GPSR; whereas IHT and GPSR essentially
perform matrix-vector multiplications, CS-BP is slowed by FFT
computations performed in each iteration for all nodes in the
factor graph. Additionally, whereas the choice
yields complexity, FFT com-
putation with samples is somewhat slow. That said,
our main contribution is a computationally feasible Bayesian
approach, which allows to reduce the number of measurements
(Fig. 5); a comparison between CS-BP and previous Bayesian
approaches to CS [25], [26] would be favorable.

To demonstrate that CS-BP deals well with measurement
noise, recall the noisy measurement setting
of Section III, where is AWGN with
variance . Our algorithm deals with noise by con-
volving the noiseless version of the estimated pdf (5) with
the noise pdf. We simulated decoding problems where

,
and . Fig. 7 plots the MMSE decoding error
as a function of and . To put things in perspective, the
average measurement picks up a Gaussian term of variance

from the signal. Although the decoding
error increases with , as long as the noise has
little impact on the decoding error; CS-BP offers a graceful
degradation to measurement noise.

Our final experiment considers model mismatch where
CS-BP has an imprecise statistical characterization of the
signal. Instead of a two-state mixture Gaussian signal model
as before, where large coefficients have variance and occur
with probability , we defined a -component mixture model.
In our definition, is interpreted as a background signal level,
which appears in all coefficients. Whereas the two-state model
adds a “true signal” component of variance to the
background signal, the large components each occur
with probability and the amplitudes of the true signals are

, where is chosen to preserve the
total signal energy. At the same time, we did not change the
signal priors in CS-BP, and used the same two-state mixture
model as before. We simulated decoding problems where

5Our LP solver is based on interior point methods.
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Fig. 8. MMSE as a function of the number of measurements� and the number
of components � in the mixture Gaussian signal model. Plots for CS-BP (x),
GPSR (circle), and IHT (asterisk) appear for � � � (dotted), � � � (dashed),
and � � � (solid). The horizontal dashed lines show the � norms of � (top)
and the small coefficients (bottom). (� � ����� � � ���� 	 � ��� 
 �

��� 
 � �, and noiseless measurements.)

, the
measurements are noiseless, and . Fig. 8 plots the
MMSE decoding error as a function of and . The figure
also shows how IHT and GPSR perform, in order to evaluate
whether they are more robust than the Bayesian approach of
CS-BP. We did not simulate CoSaMP and decoding, since
their MMSE performance is comparable to that of IHT and
GPSR. As the number of mixture components increases,
the MMSE provided by CS-BP increases. However, even for

the sparsity rate effectively doubles from to ,
and an increase in the required number of measurements is
expected. Interestingly, the greedy IHT method also degrades
significantly, perhaps because it implicitly makes an assump-
tion regarding the number of large mixture components. GPSR,
on the other hand, degrades more gracefully.

VI. VARIATIONS AND ENHANCEMENTS

Supporting Arbitrary Sparsifying Basis : Until now,
we have assumed that the canonical sparsifying basis is
used, i.e., . In this case, itself is sparse. We now
explain how CS-BP can be modified to support the case
where is sparse in an arbitrary basis . In the encoder, we
multiply the CS-LDPC matrix by and encode as

, where denotes
the transpose operator. In the decoder, we use BP to form the
approximation , and then transform via to . In
order to construct the modified encoding matrix and later
transform to , extra computation is needed; this extra cost
is in general. Fortunately, in many practical situations

is structured (e.g., Fourier or wavelet bases) and amenable
to fast computation. Therefore, extending our methods to such
bases is feasible.

Exploiting Statistical Dependencies: In many signal repre-
sentations, the coefficients are not i.i.d. For example, wavelet
representations of natural images often contain correlations be-

tween magnitudes of parent and child coefficients [2], [43]. Con-
sequently, it is possible to decode signals from fewer measure-
ments using an algorithm that allocates different distributions to
different coefficients [46], [58]. By modifying the dependencies
imposed by the prior constraint nodes (Section IV-A), CS-BP
decoding supports different signal models.

Feedback: Feedback from the decoder to the encoder can be
used in applications where measurements may be lost because
of transmissions over faulty channels. In an analogous manner
to a digital fountain [59], the marginal distributions (6) enable us
to identify when sufficient information for signal decoding has
been received. At that stage, the decoder notifies the encoder
that decoding is complete, and the stream of measurements is
stopped.

Irregular CS-LDPC Matrices: In channel coding, LDPC ma-
trices that have irregular row and column weights come closer to
the Shannon limit, because a small number of rows or columns
with large weights require only modest additional computation
yet greatly reduce the block error rate [38]. In an analogous
manner, we expect irregular CS-LDPC matrices to enable a fur-
ther reduction in the number of measurements required.

VII. DISCUSSION

This paper has developed a sparse encoding matrix and belief
propagation decoding algorithm to accelerate CS encoding and
decoding under the Bayesian framework. Although we focus on
decoding approximately sparse signals, CS-BP can be extended
to signals that are sparse in other bases, is flexible to modifica-
tions in the signal model, and can address measurement noise.

Despite the significant benefits, CS-BP is not universal in the
sense that the encoding matrix and decoding methods must be
modified in order to apply our framework to arbitrary bases.
Nonetheless, the necessary modifications only require multipli-
cation by the sparsifying basis or its transpose .

Our method resembles LDPC codes [37], [38], which use a
sparse Bernoulli parity check matrix. Although any linear code
can be represented as a bipartite graph, for LDPC codes the spar-
sity of the graph accelerates the encoding and decoding pro-
cesses. LDPC codes are celebrated for achieving rates close to
the Shannon limit. A similar comparison of the MMSE perfor-
mance of CS-BP with information theoretic bounds on CS per-
formance has demonstrated that CS-BP is asymptotically op-
timal in the large-system limit [29], [60]. Additionally, although
CS-BP is not guaranteed to converge, the recent convergence
proofs for LDLC codes [36] suggest that future work on exten-
sions of CS-BP may also yield convergence proofs.

In comparison to previous work on Bayesian aspects of
CS [25], [26], our method is much faster, requiring only

computation. At the same time, CS-BP offers
significant flexibility, and should not be viewed as merely
another fast CS decoding algorithm. However, CS-BP relies
on the sparsity of CS-LDPC matrices, and future research
can consider the applicability of such matrices in different
applications.

APPENDIX

Outline of Proof of Theorem 1: The proof begins with a
derivation of probabilistic bounds on and . Next,
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we review a result by Wang et al. [49, Theorem 1]. The proof
is completed by combining the bounds with the resultby Wang
et al.

Upper Bound on : Consider , where
the random variable (RV) has a mixture distribution

Recall the moment generating function (MGF),
. The MGF of a Chi-squared RV satisfies

. For the mixture RV ,

Additionally, because the are i.i.d., .
Invoking the Chernoff bound, we have

for . We aim to show that decays faster
than as is increased. To do so, let , where

. It suffices to prove that there exists some for which

Let and . It is easily seen
via Taylor series that and

, and so

Because of the negative term , which
dominates the higher order term for small , there ex-
ists , which is independent of , for which

. Using this , the Chernoff bound provides an upper bound
on that decays exponentially with . In
summary,

(8)

Lower Bound on : In a similar manner, MGF’s and the
Chernoff bound can be used to offer a probabilistic bound on
the number of large Gaussian mixture components

(9)

Taking into account the limited number of large components and
the expected squared norm, ,
we have

(10)

We omit the (similar) details for brevity.
Bound on : The upper bound on is obtained by

first considering large mixture components and then small com-
ponents. First, we consider the large Gaussian mixture compo-
nents, and denote .

(11)

(12)

(13)

where is the cumu-
lative distribution function of the standard normal dis-
tribution, the inequality (11) relies on and
the possibility that is strictly smaller than

is the pdf of
the standard normal distribution, (12) relies on the bound

, and the inequality (13) is motivated
by for . Noting that
increases with , for large we have

(14)
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Now consider the small Gaussian mixture components, and de-
note . As before

(15)

where in (15) the number of small mixture components is often
less than . Because , for large we have

(16)

Combining (9), (14) and (16), for large we have

(17)

Result by Wang et al. ([49], Theorem 1):
Theorem 2—[49]: Consider that satisfies the condi-

tion

(18)

In addition, let be any set of vectors .
Suppose a sparse random matrix satisfies

where is the fraction of nonzero entries in
. Let

(19)

Then with probability at least , the random projections
and can produce an estimate for satis-

fying

Application of Theorem 2 to Proof of Theorem 1: Com-
bining (8), (10), and (17), the union bound demonstrates that
with probability lower bounded by we have

and .6

When these and bounds hold, we can apply Theorem 2.
To apply Theorem 2, we must specify ( i) (18); ii) the

test vectors ; iii) the matrix sparsity ; and iv) the
parameter. First, the bounds on and indicate that

. Second, we
choose to be the canonical vectors of the identity
matrix , providing . Third, our choice of of-
fers . Fourth, we set

6The �� � � terms (8) and (10) demonstrate that there exists some� such that
for all� � � the upper and lower bounds on ��� each hold with probability
lower bounded by �� �������� , resulting in a probability lower bounded by
� � � via the union bound. Because the expression (2) for the number of
measurements� is an order term, the case where� � � is inconsequential.

Using these parameters, Theorem 2 demonstrates that all ap-
proximations satisfy

with probability lower bounded by . Combining the
probability that the and bounds hold and the decoding
probability offered by Theorem 2, we have

(20)

with probability lower bounded by .
We complete the proof by computing the number of measure-

ments required (19). Because

we need

measurements.
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