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Abstract— In many packet-based communication sys-
tems such as TCP/IP-based systems, packets are commu-
nicated over a noisy physical layer (a channel), and if a
packet cannot be decoded correctly, then the transport
layer retransmits it. Of course, retransmissions consume
significant resources and their use should be limited.
However, decreasing the likelihood of retransmission re-
quires to encode the packets with strong channel codes in
the physical layer, which also requires additional channel
resources. In this paper, we study the cross-layer tradeoff
between coding and packet retransmissions, and optimize
over the total channel resource consumption. We show
that as the packet length k increases, the redundancy
r beyond the k/C channel uses implied by Shannon’s
channel capacity C is Θ(

√

k ln(k)) extra channel uses.
Moreover, as k increases we must use stronger channel
codes. We then apply these results to universal coding over
a piecewise memoryless channel with transitions between
unknown i.i.d. statistics. Our constructive universal algo-
rithm has redundancy r = O(k2/3

√

ln(k)) using packets
of polynomially increasing lengths while accounting for
possible packet drops caused by transitions in the statistics.

Keywords: Channel coding, cross-layer design, non-
asymptotic information theory, packet networks, piece-
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I. INTRODUCTION

Many communication systems rely onpackets. Input
data is partitioned into packets, each packet isencoded
and transmitted separately over a lossy physical layer (a
channel), and the channel output is then used todecode
the packet. If the packet is decoded successfully, then
all is well. But if the decoding process fails, then we
have a packet drop. In this case, the packet can be

This work was supported by NSF, AFOSR, ONR, and the Texas
Instruments Leadership University Program. Email:{drorb, shri,
richb}@rice.edu; Web: dsp.rice.edu.

retransmitted.1 Therefore, as long as the communication
designer is willing to admit some delay in case of
a necessary retransmission, reliable communication is
assured. For example, in TCP-IP the physical layer may
incorporate channel coding, whereas the transport layer
uses retransmissions to ensure reliability [1].

If a strong channel code is used, then the likelihood
of a packet drop is small, and less channel resources are
consumed for retransmissions. However, such powerful
coding techniques also consume more resources. In
this paper, we study the cross-layer tradeoff between
resource expenditures on channel coding and on packet
retransmissions.

Let us quickly discuss various factors that affect this
tradeoff. First, if the delays in the retransmission process
are significant, for example in space communications,
then retransmissions are even more undesirable, hence
there is a need to use stronger coding techniques. For
applications such as email that are not very sensitive
to delays, retransmission strategies are appropriate and
frequently used [1]. Second, non-stationary channels
are conducive to retransmission policies, because we
prefer not to design the code for the worst-case chan-
nel [2]. Third, in multicast and broadcast applications,
retransmissions are bad because each receiver may have
lost or received a different set of packets, and so the
acknowledgment packets add up and consume substantial
resources [1]. Fourth, in many communication systems
there are various queues, which may also cause packet
drops. No matter how powerful our channel code may
be, some packets will still be dropped, and these effects
will bias the design to use slightly weaker channel coding
techniques. We leave the study of such issues for future
work. Finally, in rateless codes [3] the channel encoder

1The encoder decides whether to retransmit or not based on a small
amount of feedback (such as acknowledgment packets in TCP [1])
received from the decoder. The decoder can determine whether the
decoding process is successful using error detection mechanisms.
Although such details are essential in any implementation,they may
obscure the essence of our problem, and therefore our presentation
is purposefully more abstract.



continues transmitting until the decoder has received
enough information to recover the message. The decoder
then acknowledges correct reception of the message.
For a comparison of rateless codes to retransmission
techniques, see Section V.

In this paper, we study the total expected channel uses
required to transmit a packet in a communication system
that uses retransmissions. We ignore additional important
issues such as delay, design complexity, sophisticated
source and channel modeling, packet drops caused by
queueing, and so on. Yet despite our simple formulation,
we will see that it provides useful insights on effective
design of packet drop probabilities.

We then apply these results to a setup where a
piecewise memoryless channel has transitions between
unknown i.i.d. statistics. We provide a constructive uni-
versal algorithm that uses packets of polynomially in-
creasing lengths up to a transition in the statistics. The
design of the block lengths accounts for the additional
tradeoff between packet drops caused by transitions in
the statistics and how close we can approach capacity
while using short packets.

II. PROBLEM FORMULATION

Consider a length-k input packet that is communi-
cated over an independent and identically distributed
(i.i.d.) channel with capacityC.2 Information theory [4]
suggests that the numbern of channel uses necessary
is approximatelyk/C. However, for many channels
of practical interest (for example a binary symmetric
channel), using the channeln times to communicate the
packet incurs a strictly positive probability of packet
drop, even if n � k/C. This discrepancy is caused
by the infinitely long codewords used in the proofs of
the capacity theorems [4]. Although information theory
has set the theoretical limits on communication systems,
these limits are asymptotic in nature and may not apply
to our specific problem. To deal with input packets of
finite lengthk, we adapt the following theorem from our
recent work [5] (see also Wolfowitz [6] and references
therein).

Theorem 1: [5] For a binary symmetric channel with
crossover probabilityp, there exists a constantQ1 such
that, if the numbern of channel uses in the first trans-
mission satisfies

n = k/C + Q1

√
kδ, (1)

then the probabilityε of packet drop satisfies

ε = Φ(δ) + O(1/
√

k).

2An i.i.d. model may be too simple for some wireless systems,
yet may be appropriate in other scenarios, especially for some wired
channels. We consider non-stationary channels in Section IV.

In our theorem, we useΦ(·) to denote the error
function3 andO(

√
k) to denote a function that is upper

bounded by a term proportional to
√

k.4 The Berry-
Esséen inequality [7, 8] enables to upper bound this
O(

√
k) term.

The main intuition that may be gleaned from Theo-
rem 1 is that backing offδ standard deviations from the
channel capacity buys usΦ(δ) probability of error. Our
previous results [5] show how to computeQ1 in closed
form for the binary symmetric channel (BSC). Similar
forms are also available for other types of channels [6,
9, 10] and for the dual problem of distributed source
coding [6, 11].

If the first attempt to transmit the packet succeeds,
then the total resource expenditure isn channel uses.
However, if a packet drop occurred, then we retransmit
the packet. How many extra channel uses must we
allocate for this unfortunate occurrence? Because there
may be additional packet drops, it could be tedious to
examine all possible cases. Instead, we assume that the
expected resource expenditure in case of a packet drop
is Q2k channel uses, whereQ2 is constant. We justify
this assumption by noting that we can use a stronger
channel code in a second transmission round to ensure an
extremely high probability of success (c.f. Birk et al. [12,
13]). Finally, we emphasize again that packet drops
caused by queueing or additional effects will bias the
design to use slightly weaker channel coding techniques.
We leave the study of such issues for future work.

Let t be the total expected resource expenditure in
terms of channel uses. Combining the numbern of
channel uses during the first transmission attempt (1)
and the resource expenditures in case of packet drop,
we have

t = k/C + Q1

√
kδ + Q2k

ε
︷ ︸︸ ︷

[Φ(δ) + O(1/
√

k)]

= k/C + Q1

√
kδ + Q2kΦ(δ) + O(

√
k). (2)

We also define theredundancy r, which is the extra
expected number of channel uses beyond capacity, i.e.,

r = Q1

√
kδ + Q2kΦ(δ) + O(

√
k). (3)

This formula captures the essential tradeoff between cod-
ing and packet retransmission. If a strong channel code
is used for the first transmission (smallε), thenQ2kε is
small, but thenδ must be large, and so extra resources
are expended for that first transmission. In contrast, large
ε wastes substantial resources on retransmissions.

3More formally, Φ(x) , 1
√

2π

R ∞

x
e−t2/2dt.

4For two functionsf(n) and g(n), f(n) = O(g(n)) if ∃c, n0 ∈
R

+, 0 ≤ f(n) ≤ cg(n) for all n > n0. Similarly, f(n) = Θ(g(n))
if ∃c1, c2, n0 ∈ R

+, 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n > n0.



III. M AIN RESULT

The following theorem describes the optimal theoret-
ical tradeoff between coding and packet retransmission.

Theorem 2: The optimal redundancyr satisfies

r = Θ(
√

k ln(k)).

Proof: Equation (3) for the expected resource ex-
penditure redundancy includes an uncertainty ofO(

√
k)

channel uses. Therefore, we cannot determine theδ that
minimizes r, becauseδ may affect theO(

√
k) term.

Instead, we assign

δ∗ =

√

ln(k/ ln2(k)),

where ln(·) denotes the natural logarithm. We then
incorporate the well known approximation thatΦ(x) ∝
e−x2/2/x for largex, which yields

Φ(δ∗) ≈ e−[ln(k/ ln2(k))]/2

√

ln(k/ ln2(k))

=

√

ln2(k)/k
√

ln(k/ ln2(k))

= O(
√

ln(k)/k).

Therefore, the total expected redundancy is

r = Q1

√

kln(k/ ln2(k))

+Q2k · O(
√

ln(k)/k) + O(
√

k).

The first and second terms on the right hand side are both
of order

√

k ln(k), and the third Berry-Esséen term [7,
8] is of smaller order, and thus no longer affects the
performance. Therefore, we have obtained atight Θ(·)
order term bound for the redundancy, because a reduction
in the order of either of the first two terms would increase
the order of the other term. �

We provide numerical results in Figure 1. Our re-
sults use a binary symmetric channel with crossover
probability p = 0.1. This value for p is reasonable
in applications where the physical layer is moderately
noisy; the channel capacity in this case isC(p) = 0.53.
We also used a retransmission factorQ2 = 5, which is
much larger than1/C, and thus enables to use powerful
coding techniques. As the packet lengthk increases, the
redundancyr increases asO(

√

k ln(k)) and the packet
drop probability decays. For packet lengths of practical
interest, the redundancy is quite significant.

IV. A PPLICATION TO CHANNELS WITH TRANSITIONS

We now consider communication over a piecewise
memoryless binary channel whose crossover probability
transitions between different values. In this universal
setting, neither the times when these transitions occur
nor the channel statistics (crossover probabilities) are
known. Our goal is to provide universal channel coding
techniques over non-stationary channels. Whereas earlier
we wanted to minimize the amount of resources required
for communication in a setting where a transport layer
allowed us to compensate for errors over a physical
layer, here the goal is to operate in a universal manner.
Our approach is that the minimization of resource usage
(channel uses in our problem) requires to use variable
rate codes. However, the channel statistics are unknown,
and so we must estimate them. To do so, feedback from
the channel decoder must be used. In recent work [14–
17], universal channel coding approaches were provided
for a stationary BSC. The main idea there was to use
packets of increasing length, where at the end of each
packet the decoder relays the current estimate of the
crossover probability to the encoder via feedback; as
more packets are processed, the estimation quality im-
proves and the encoder can use rates closer to the channel
capacity. We will show that the setting with transitions
between crossover probabilities requires to consider the
tradeoffs between coding and retransmission.

Let us assume that at some deterministic (yet un-
known) time the channel transitions between crossover
probability p to a different p′. Before the transition,
we use a channel code designed forp (or our current
estimate forp). The transition occurs during the trans-
mission of some packet. Ifp′ < p, then we have agood
transition – the packet will encounter less channel errors
than usual, and therefore the likelihood of success is
extremely high. In contrast, ifp′ > p then we have a
bad transition – there will be more channel errors than
usual, and the packet will be dropped.

Obviously the possibility that a packet is dropped
because of a bad transition requires us to retransmit and
is wasteful of resources. But even good transitions cause
difficulties, because the number of channel uses may
greatly exceed the resource expenditure required for the
smaller crossover probabilityp′. Furthermore, although
the packet most likely succeeded, we are incapable of
estimatingp′. We conclude that (i) a transition during a
packet that requiredn channel uses will usually cause
Θ(n) resource loss (even for a good transition) and
(ii) after each such transition the process of estimating
p′ must begin from scratch. Consequently, our analysis
considers how to transmit as many bits as possible over
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Fig. 1. Numerical tradeoff between coding and packet retransmission: As the packet lengthk increases, the redundancyr
increases and packet drop probabilityε decays. We used a BSC with crossover probabilityp = 0.1 and chose a retransmission
factor Q2 = 5.

a channel that has crossover probabilityp for some time
and later transitions top′. Note, however, that in contrast
to the result of Section III, here the packet drop occurs
because of the channel transition, and over-design for
several standard deviations of channel noise (Theorem 1)
does not suffice. Unless we prefer to operate well below
capacity, packet drops are inevitable in this setting.

In recent work on universal coding for a station-
ary BSC [14–17], packets of geometrically increasing
lengths enabled to approach the channel capacity quickly.
Suppose that we have processedi blocks so far, and
in block j ∈ {1, . . . , i} we conveyedkj bits via ni

channel uses. LetNi ,
∑i

j=1 ni be the total number of
channel uses so far. Ifni are increasing geometrically
then the ni+1 = Θ(Ni). If a transition occurs in
block i + 1, then theO(n) penalty will significantly
increase the redundancy. Instead, we suggest to use
ni+1 = O((Ni)

2/3). With this choice of packet lengths,
the results of Section III can be used to show that
the aggregate redundancy during the previousi blocks
satisfiesr = O((Ni)

2/3
√

ln(Ni)), whereas the penalty
for a transition isO((Ni)

2/3). Because the order of
the aggregate number of channel uses during the firsti
blocks is similar to the order of the aggregate number of
bits conveyed, i.e.,Ni = O(Ki), we have the following
result. The detailed proof has been omitted for brevity.

Theorem 3: Using packets of lengthni+1 =
O((Ni)

2/3) for a transmission scheme over a piecewise
memoryless channel with transitions between i.i.d. seg-
ments, the redundancyr required while conveyingk

aggregate bits satisfies

r = O(k2/3
√

ln(k)).
We can also provide a somewhat smaller order term

to lower bound the redundancy. In words, this lower
bound states that any packet-based feedback scheme
for a piecewise memoryless channel cannot achieve a
significantly smaller redundancy. The disparity between
our converse and achievable bounds lies in the extra
√

ln(·) term required to support possible retransmissions
in Section III. Noting that LDPC codes approach ca-
pacity as quickly as indicated in Theorem 1 (with a
somewhat larger constantQ1 [18]), the results of this
section are significant because they identify a research
direction where the potential gains to be had are much
larger than in traditional channel coding.

V. CLOSING STATEMENTS

This work has studied the cross-layer tradeoff between
resource expenditures on channel coding in the physical
layer and on packet retransmissions in the transport layer.
Theorem 2 proves that a proper choice ofδ yields a
penalty for retransmissions on the same order as the
number of channel uses expended beyond capacity. (The
latter expenditure is necessary to combat non-asymptotic
effects [5, 9, 11].) Furthermore, becauseδ∗ is monotone
increasing ink, as k increases we must use stronger
channel codes. This can be explained by realizing that
a packet drop is more costly ask increases, and so it
is advantageous to back off more in order to reduce the
retransmission penalty.



While appealing and insightful, these results are not
the complete story, they are just the first chapter in our
work. When piecewise memoryless channels are consid-
ered, retransmissions must be needed to combat against
a bad transition from a small crossover probabilityp to a
largerp′. In this case, in addition to the tradeoff between
the probability of decoding error and the penalty for
retransmission, we have an additional tradeoff between
using longer packets (thus employing channel codes with
rates closer to capacity) and using shorter packets that
are not too costly when dropped. The intriguing result is
that the redundancy in this case is of a much larger order.
Therefore, universal coding for non-stationary channels
appears to be a research direction where large potential
gains are possible. Additional future work will consider
effects such as packet drops induced by queueing.

Finally, rateless codes [3] provide reliable commu-
nication by encoding until the decoder has received
enough information to recover the packet. Therefore,
in some sense these methods enable to do away with
packet drops. Unfortunately, the redundancy using that
technique isO(

√
k log2(k)), whereas the penalty we

have achieved using retransmissions is smaller. We con-
clude that judicious design of drop probabilities makes
retransmission policies an effective tool for ensuring reli-
able communication over a lossy channel, and additional
related tradeoffs appear in the design of packet lengths
for universal schemes.
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