

Signal Estimation with Low Infinity-Norm Error by Minimizing the Mean p-Norm Error

Jin Tan, Dror Baron

North Carolina State University

Liyi Dai

Army Research Office

Mar. 21, 2014

Motivation

Signal Estimation

- Medical imaging (tomography)
- Source and channel coding
- Financial prediction
- Electromagnetic scattering
- Seismic imaging (oil industry)
- Speech recognition
- Many more...

Noise introduced from sampling, transmission, compression and decompression, ...

Noise introduced from sampling, transmission, compression and decompression, ...

$$y = Ax + z$$
 Matrix channel

y = x + z

Matrix channels

$$y = Ax + z$$

Observations

Observations

Observations

Which \hat{x} is the best estimate?

Error metric

Examples:

- $||\hat{x} x||_1$ (absolute error)
- $||\hat{x} x||_2$ (square error)
- Hamming distance
- and more...

$$D(\hat{x}, x) = ||\hat{x} - x||_{\infty}$$
$$= \max_{i} |\hat{x}_{i} - x_{i}|$$

- Group testing
- Trajectory plan in control system
- OFDM

$$D(\hat{x}, x) = ||\hat{x} - x||_{\infty}$$

Expected error

$$\hat{x}_{\infty} = \underset{\hat{x}}{\operatorname{argmin}} E[||\hat{x} - x||_{\infty}|y]$$

$$D(\hat{x}, x) = ||\hat{x} - x||_{\infty}$$

Expected error

$$\hat{x}_{\infty} = \underset{\hat{x}}{\operatorname{argmin}} E[||\hat{x} - x||_{\infty}|y]$$

Gaussian input

Wiener filter:
$$\hat{x}=c\cdot y$$
, where $c=\frac{\sigma_{\chi}^2}{\sigma_{\chi}^2+\sigma_{Z}^2}$ Optimal for ℓ_p errors, $p\geq 1$ [Sherman'58]

Input distribution

Gaussian mixture model [Alecu'06]

Gaussian mixture input

$$y = x + z$$

Multiple Wiener filters:

$$\hat{x}_1 = c_1 \cdot y$$

$$\hat{x}_2 = c_2 \cdot y$$

$$\hat{x}_3 = c_3 \cdot y$$

$$c_1 = \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2}$$
 $c_2 = \frac{\sigma_2^2}{\sigma_2^2 + \sigma_2^2}$

$$c_3 = \frac{\sigma_3^2}{\sigma_3^2 + \sigma_z^2}$$

Multiple Wiener filters:

$$\hat{x}_1 = c_1 \cdot y$$

$$\hat{x}_2 = c_2 \cdot y$$

$$\hat{x}_3 = c_3 \cdot y$$

Theorem [Tan, Baron, and Dai '14]

$$y = x + z$$

Multiple Wiener filters:

$$\sqrt{\hat{x}_1} = c_1 \cdot y$$

$$\hat{x}_2 = c_2 \cdot y$$

$$\hat{x}_3 = c_3 \cdot y$$

$$c_1 = \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2}$$
, where $\sigma_1^2 = \max\{\sigma_1^2, \sigma_2^2, \sigma_3^2\}$

Limitation of Wiener filter

• Wiener filter $\hat{x}_1 = c_1 \cdot y$ minimizes ℓ_{∞} -norm error when $N \to \infty$.

What happens if N is finite?

$$\widehat{\mathbf{x}}$$
 $D(\widehat{\mathbf{x}}, \mathbf{x})$

$$||\hat{x} - x||_{\infty} = \lim_{p \to \infty} ||\hat{x} - x||_{p}$$

$$D(\hat{x}, x) = ||\hat{x} - x||_{\infty}$$

$$D(\hat{x}, x) = \sum_{i} |\hat{x}_{i} - x_{i}|^{p}$$

$$\hat{x}_i = \operatorname{argmin} E[|\hat{x}_i - x_i|^p | y_i]$$

$$||\hat{x} - x||_{\infty} = \lim_{p \to \infty} ||\hat{x} - x||_{p}$$

$$D(\hat{x}, x) = ||\hat{x} - x||_{\infty}$$

$$D(\hat{x}, x) = \sum_{i} |\hat{x}_{i} - x_{i}|^{p}$$

$$\hat{x}_i = \operatorname{argmin} E[|\hat{x}_i - x_i|^p | y_i]$$

Component-wise estimation!

Numerical results

$$\hat{x}_9$$
 is estimated by $D(\hat{x}, x) = \sum_i |\hat{x}_i - x_i|^9$

$$x \sim 0.01 \times N(0,2) + 0.03 \times N(0,1) + 0.06 \times N(0,0.5) + 0.9 \times \delta(x)$$

Matrix channels

Matrix channels

$$\hat{x}_{\infty} = \underset{\hat{x}}{\operatorname{argmin}} E[||\hat{x} - x||_{\infty}|y]$$
$$f(x|y)?$$

Decoupling principle [Tanaka '02, Guo & Verdu '05]

Decoupling principle [Tanaka '02, Guo & Verdu '05]

Relaxed belief propagation [Rangan'10]

Numerical results

$$\hat{x}_9$$
 is estimated by $D(\hat{x}, x) = \sum_i |\hat{x}_i - x_i|^9$

$$x \sim 0.01 \times N(0,2) + 0.03 \times N(0,1) + 0.06 \times N(0,0.5) + 0.9 \times \delta(x)$$

Summary

- ℓ_{∞} -norm error
- Gaussian mixture input
- Wiener filter $\hat{x}_1 = c_1 \cdot y$
- $||\hat{x} x||_{\infty} = \lim_{p \to \infty} ||\hat{x} x||_p$

Thank you!