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Motivation



Signal Estimation
• Medical imaging (tomography)

• Source and channel coding

• Financial prediction

• Electromagnetic scattering

• Seismic imaging (oil industry)

• Speech recognition

• Many more…



Observations Noise

Noise introduced from sampling, transmission, 
compression and decompression, …

𝑦 = 𝑥 + 𝑧
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Matrix channel𝑦 = 𝐴𝑥 + 𝑧



Scalar channels         Matrix channels

y = Ax + zy = x + z



Scalar channels



Noise

𝑦 = 𝑥 + 𝑧
Scalar channels

Observations



𝑦 𝑥?
Scalar channels

Observations



𝑦 Algorithm 1
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Observations
Which  𝑥 is the best estimate?



Error metric



Examples:

• |  𝑥 − 𝑥| 1 (absolute error)

• ||  𝑥 − 𝑥||2 (square error)

• Hamming distance

• and more…



• Group testing
• Trajectory plan in control system
• OFDM

𝐷  𝑥, 𝑥 = ||  𝑥 − 𝑥||∞
= max

𝑖
|  𝑥𝑖 − 𝑥𝑖|



Expected error
 𝑥∞ = argmin

 𝑥
𝐸[ ||  𝑥 − 𝑥||∞|𝑦]
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Observations

Noise

f(z)

𝑦 = 𝑥 + 𝑧
Scalar channels



f(z)f(x)

𝑦 = 𝑥 + 𝑧
Scalar channels



f(z)f(x)

f(x|y) using Bayes’ rule

𝑦 = 𝑥 + 𝑧
Scalar channels



Gaussian input

Wiener filter:  𝑥 = 𝑐 ⋅ 𝑦, where

𝑦 = 𝑥 + 𝑧

𝑐 =
𝜎𝑥

2

𝜎𝑥
2 + 𝜎𝑧

2

Optimal for ℓ𝑝 errors, 𝑝 ≥ 1 [Sherman’58]



Input distribution



Gaussian mixture model [Alecu’06]



Gaussian mixture input

𝑦 = 𝑥 + 𝑧

Multiple Wiener filters: 
 𝑥1 = 𝑐1 ⋅ 𝑦
 𝑥2 = 𝑐2 ⋅ 𝑦
 𝑥3 = 𝑐3 ⋅ 𝑦

𝑐1 =
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2
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𝜎2
2

𝜎2
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2
𝑐3 =

𝜎3
2

𝜎3
2 + 𝜎𝑧

2



Multiple Wiener filters: 
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 𝑥3 = 𝑐3 ⋅ 𝑦

𝑥



Multiple Wiener filters: 
 𝑥1 = 𝑐1 ⋅ 𝑦
 𝑥2 = 𝑐2 ⋅ 𝑦
 𝑥3 = 𝑐3 ⋅ 𝑦

𝑦 = 𝑥 + 𝑧

𝑐1 =
𝜎1

2

𝜎1
2+𝜎𝑧

2 ,  where 𝜎1
2 = max{𝜎1

2, 𝜎2
2, 𝜎3

2}

Theorem [Tan, Baron, and Dai ’14]



•Wiener filter  𝑥1 = 𝑐1 ⋅ 𝑦

minimizes ℓ∞-norm error 

when 𝑁 → ∞.

•What happens if 𝑁 is finite?

Limitation of Wiener filter



||  𝑥 − 𝑥||∞ = lim
𝑝→∞

||  𝑥 − 𝑥||𝑝
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𝑝
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Component-wise estimation!



Numerical results



𝑥 ∼ 0.01 × 𝑁 0, 2 + 0.03 × 𝑁 0,1 + 0.06 × 𝑁 0,0.5 + 0.9 × 𝛿(𝑥)

 𝑥9 is estimated by

𝐷  𝑥, 𝑥 =  𝑖 |  𝑥𝑖 − 𝑥𝑖|
9



Matrix channels



𝑦 = 𝐴𝑥 + 𝑧
Matrix channels



 𝑥∞ = argmin
 𝑥

𝐸[||  𝑥 − 𝑥||∞|𝑦]

𝑓 𝑥 𝑦 ?



Noise

Input signal

Observations

Decoupling principle [Tanaka ’02, Guo & Verdu ‘05]

𝑁 → ∞



Input signal
q

Gaussian noise observations

Scalar 
Gaussian 
channels

Decoupling principle [Tanaka ’02, Guo & Verdu ‘05]

𝑓(𝑥|𝑞)

x r



Input signal Gaussian noise observations

Scalar 
Gaussian 
channels

Relaxed belief propagation [Rangan’10]

𝑓(𝑥|𝑞)

qx r



Numerical results



 𝑥9 is estimated by

𝐷  𝑥, 𝑥 =  𝑖 |  𝑥𝑖 − 𝑥𝑖|
9

𝑥 ∼ 0.01 × 𝑁 0, 2 + 0.03 × 𝑁 0,1 + 0.06 × 𝑁 0,0.5 + 0.9 × 𝛿(𝑥)



Summary



• ℓ∞-norm error

• Gaussian mixture input

• Wiener filter  𝑥1 = 𝑐1 ⋅ 𝑦

• ||  𝑥 − 𝑥||∞ = lim
𝑝→∞

||  𝑥 − 𝑥||𝑝

Decoupling



Thank you!


