Group Testing with Side Information

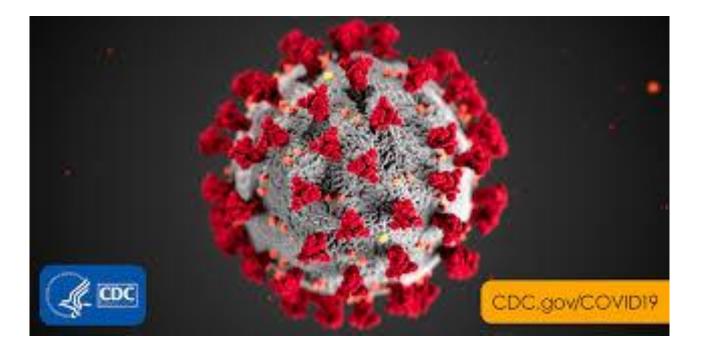
Dror Baronⁿ

with Junan Zhu,^h Kristina Rivera,ⁿ Shujie Cao,^w Chau-Wai Wong,ⁿ Ritesh Goenka,ⁱ and Ajit Rajwadeⁱ

^hHarvest Fund, ⁱIIT Bombay, ⁿNC State University, and ^wNorthwestern University

April 2023

Motivation

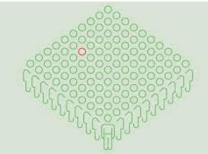


• Fast / efficient / affordable testing of large populations

Conventional testing

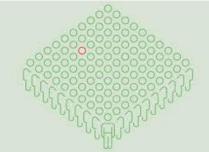
- Swab patient for mucus
 - Saliva also feasible [Wyllie et al. 2020]
- Amplify viral material
 - Can use reverse transcription polymerase chain reaction (RT-PCR)
- Test for viral material
- Challenges
 - False negatives / positives
 - Time / resource intense
 - How much testing? [Kontoyiannis et al. 2020]
- Want fast / efficient / affordable testing

Pooled / group testing [Dorfman 1943]



- Suppose low prevalence (0.1%? 1%?); few people sick
- Pool group of (10?) people's samples together
- All healthy \rightarrow negative pooled test \rightarrow rules out group
- Any sick \rightarrow positive \rightarrow need more information

Pooled / group testing [Dorfman 1943]

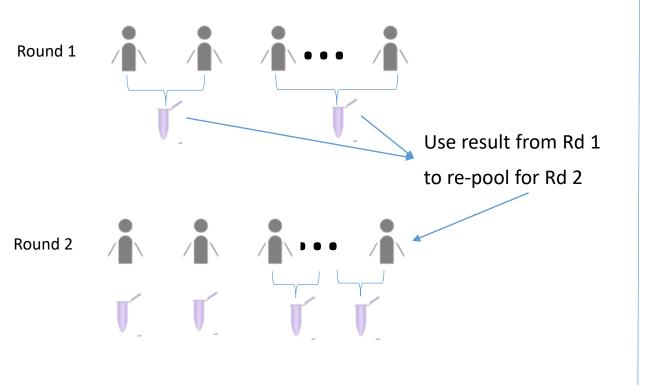


- Suppose low prevalence (0.1%? 1%?); few people sick
- Pool group of (10?) people's samples together
- All healthy \rightarrow negative pooled test \rightarrow rules out group
- Any sick \rightarrow positive \rightarrow need more information
- Can optimize pool size [Hanel & Thurner 2020]
- Demonstrated for COVID-19 [Kishony et al. 2020]
 Used in Nebraska [Bilder]; China tested millions daily in 2022
- Testing frequency vs. disease spread risk [Lakdawalla et al. 2020]
 Test asymptomatics (no symptoms) frequently
- Non-adaptive approaches (Tapestry; IIT Bombay; [Ghosh et al. 2020])

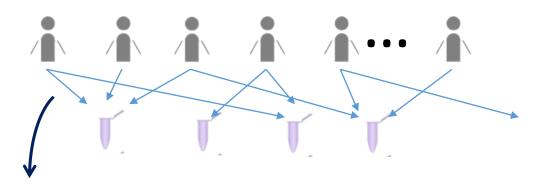
Non-Adaptive Group Testing

Non-adaptive group testing

- Dorfman pooling
- Each sample in *single pool*



- Each sample in multiple pools
- Identify positive individuals by combining tests
- Single-round (non-adaptive)



Algorithm decides who goes into which pool

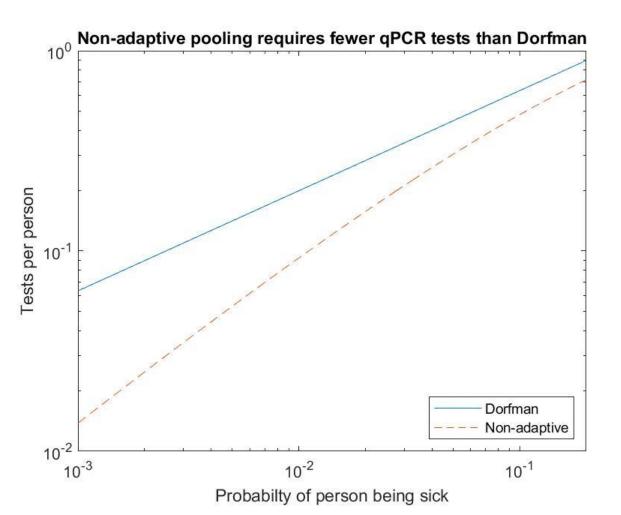
Results in one round

Robust to erroneous tests

- Dorfman
 - False negative in first round \rightarrow doesn't reach second round
 - Very sensitive to erroneous tests / dilution / etc.
- Non-adaptive pooling
 - Suppose (example) each individual sample goes to 5 pools
 - All 5 positive \rightarrow individual very likely positive
 - 0-3 positive \rightarrow very likely negative
 - 4? Depends on Probability(false negative) & pool structure
 - Algorithm fuses information into probabilities
- Robust to erroneous tests \rightarrow dilution less important

Dorman versus non-adaptive

- Dorfman sensitive to errors \rightarrow use small pools \rightarrow more tests
- Non-adaptive uses larger pools \rightarrow fewer PCR tests
 - Pool sizes up to 48
- Big edge at low prevalence
 - Great for asymptomatics
 - Also better at high prevalence



Lower latency

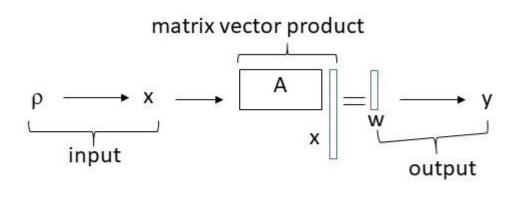
- Dorfman
 - Moderate test capacity improvement \rightarrow wait hours for PCR machine
 - Needs 2 rounds (e.g., 3-hour PCR \rightarrow 6 hours)
- Non-adaptive pooling
 - Big capacity improvement \rightarrow PCR machines immediately available
 - Non-adaptive techniques use *single round* (3 hours)
- Lower latency overall
- Can use "semi-adaptive" multi-round pooling
 - More latency but fewer misdiagnoses

How?

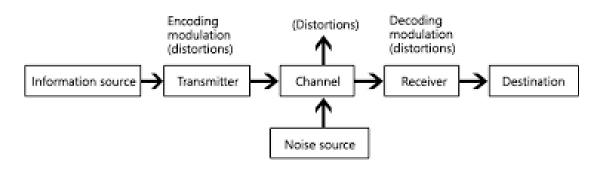
Problem Formulation and Measurement Channel

Problem formulation

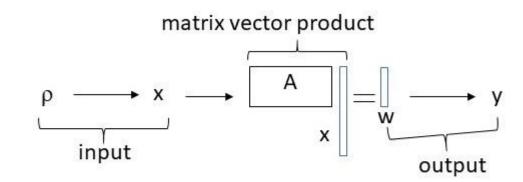
- Convert to linear algebra
- ρ sickness prevalence
- x input vector
 - Binary ($x_n=1$ sick; $x_n=0$ healthy) or real valued viral loads
- Multiply x by binary *measurement matrix* A
 - Rows/cols correspond to measurements / patients
- Matrix vector product w; $w_{\rm m}$ #sick in measurement m
- Noisy y_m depends on w_m
- <u>Goal</u>: Estimate x from y, A, statistical info (e.g., ρ)



Communication system analogy



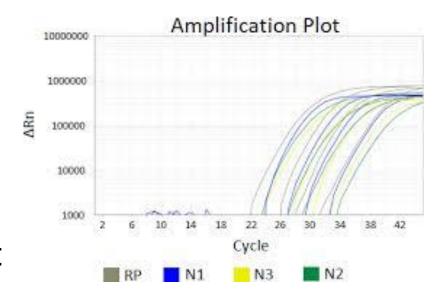
- Want to communicate x
- Encoder converts x to w
- Transmit w over noisy channel
- Noisy channel output y
- Recover x from y



- x patient status vector
- Auxiliary vector w=Ax
- Measurement y_m depends on w_m
- Measurement channel $f(y_m|w_m)$
- Recover x from y, A, ρ , f(y_m|w_m)
- Want encoder A and decoding algo to maximize information flow from x to y

What channel?

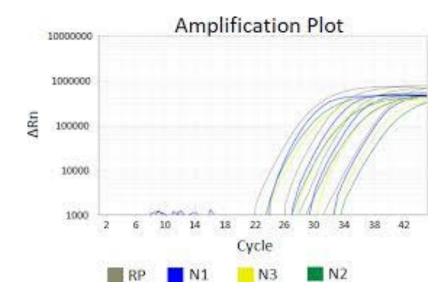
- More about RT-PCR
 - Genetic test
 - Viral density increase ~2X per iteration
 - Sufficiently large viral density \rightarrow fluorescent



- When is it fluorescent? (Tapestry; IIT Bombay; [Ghosh et al. 2020])
 - No viral matter \rightarrow never
 - Minimal \rightarrow 37-38 iterations
 - Sick patient \rightarrow 22-31 iterations

Two PCR channels

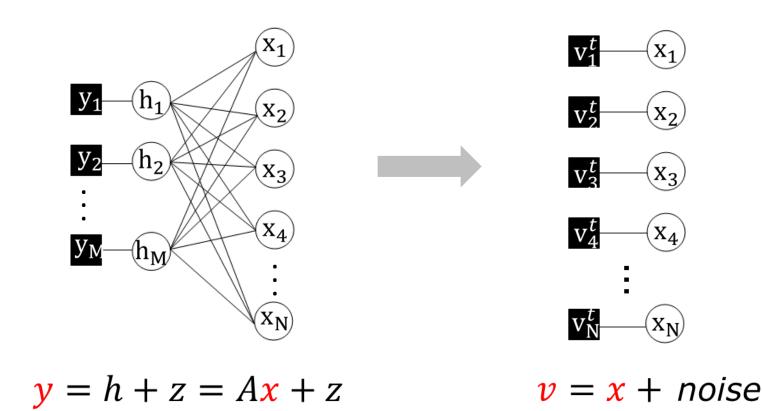
- Binary PCR
 - Several dozen iterations
 - Fluorescent (1) or not (0)?
 - Binary input & output
 - False positive contamination is amplified
 - False negative weak viral load diluted by pooling
- Quantitative PCR (Tapestry; IIT Bombay; [Ghosh et al. 2020])
 - Multiplicative noise: $\log_2(y_m) = \log_2(w_m) + N(0, 0.01)$
 - Special case, $w_m = 0 \rightarrow y_m = 0$
 - Non-negative real input & output



Approximate Message Passing Linear regression for large "well-behaved" matrices

Approximate message passing [Donoho et al. 2009]

- Fast iterative algorithm
- Decouples matrix problem (y=w+z=Ax+z, Gaussian z) to simpler scalar channel denoising (v=x+Gaussian noise)
- Based on approximation of precise message passing



- Initialize x⁰=0
- At iteration t, do
- Residual: $r^{t} = y Ax^{t} + \frac{r^{t-1}}{M/N} \langle \eta'_{t-1} (x^{t-1} + A^{T}r^{t-1}) \rangle$
- Pseudo-data: $v^t = x^t + A^T r^t$
- Denoising: $x^{t+1} = \eta_t(v^t)$

- Initialize x⁰=0
- At iteration t, do
- Residual: $r^{t} = y Ax^{t} + \frac{r^{t-1}}{M/N} \langle \eta'_{t-1}(x^{t-1} + A^{T}r^{t-1}) \rangle$
- Pseudo-data: $v^t = x^t + A^T r^t$
- Denoising: $x^{t+1} = \eta_t(v^t)$

Denoising function often $\eta = E[X|V]$

- Initialize x⁰=0
- At iteration t, do

Onsager correction term ensures v=x+Gaussian

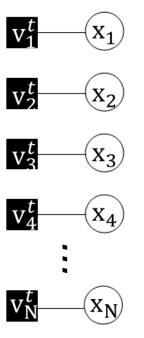
• Residual:
$$r^{t} = y - Ax^{t} + \frac{r^{t-1}}{M/N} \langle \eta'_{t-1}(x^{t-1} + A^{T}r^{t-1}) \rangle$$

• Pseudo-data:
$$v^t = x^t + A^T r^t$$

• Denoising: $x^{t+1} = \eta_t(v^t)$

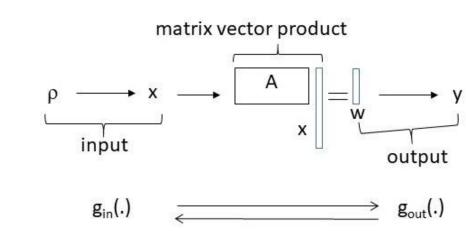
- Initialize x⁰=0
- At iteration t, do
- Residual: $r^{t} = y Ax^{t} + \frac{r^{t-1}}{M/N} \langle \eta'_{t-1}(x^{t-1} + A^{T}r^{t-1}) \rangle$
- Pseudo-data: $v^t = x^t + A^T r^t$
- Denoising: $x^{t+1} = \eta_t(v^t)$

Standard AMP: $\eta_t(v^t)$ is scalar



Generalized AMP (GAMP) [Rangan 2011]

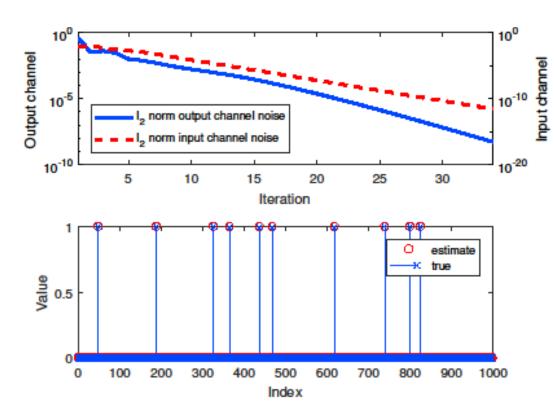
- Recall w=Ax
 - AMP: y=w+Gaussian
 - GAMP: probability density f(y|w)
 - Resembles AMP; also iteratively denoises w
 - Input / output channels
 - g_{in}(.) between prior & x; g_{out}(.) between y & w
- Examples:
 - 1. Additive noise, y=w+z, Gaussian z; use AMP
 - 2. Binary PCR \rightarrow binary y [Zhu, B, Rivera 2020]
 - 3. Quantitative PCR \rightarrow real-valued y



Numerical results [Zhu, B, Rivera 2020]

- Binary channel
- N=5000 patients; ρ =1% prevalence; M=1000 measurements
- R=M/N=20% measurement rate

- Accurate reconstruction
- Fast (~1 sec on laptop)



Side Information

Side information

- Earlier goal: Estimate x from y, A, statistical info
- Side information (SI) often available
 - Symptoms affect probability of infection
 - Family members w/ correlated infection status
 - Address, profession, coworkers, ...
 - Contact tracing

- Input x no longer independent and identically distributed (iid)
 - Non-identical distributions (symptoms, address, ...)
 - *Dependencies* between variables (families, contact tracing, ...)

GAMP with SI for non-iid x

• AMP can use SI in denoiser

[B et al. 2017, Ma et al. 2019, Liu et al. 2020, Liu et al. 2022]

• Vector denoisers support dependencies between patients [Donoho et al. 2013, Ma et al. 2014]

GAMP with SI for non-iid x

- AMP can use SI in denoiser [B et al. 2017, Ma et al. 2019, Liu et al. 2020, Liu et al. 2022]
- Vector denoisers support dependencies between patients [Donoho et al. 2013, Ma et al. 2014]

- Contribution to group testing community:
 - Prior art considers non-identical distributions
 - Dependent variables with combinatorial complexity [Cuturi et al. 2020]
 - Group testing for connected communities [Nikolopoulos et al. 2020]
 - Our approach supports various non-i.i.d. distributions and is fast

GAMP with SI for non-iid x

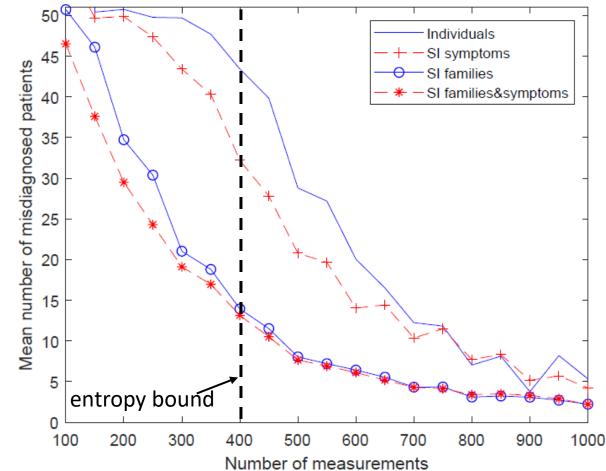
- AMP can use SI in denoiser [B et al. 2017, Ma et al. 2019, Liu et al. 2020, Liu et al. 2022]
- Vector denoisers support dependencies between patients [Donoho et al. 2013, Ma et al. 2014]

- Contribution to AMP community:
 - Vector denoisers with SI in GAMP
 - Numerical evidence for binary A with const ones per row/col

Numerical Results

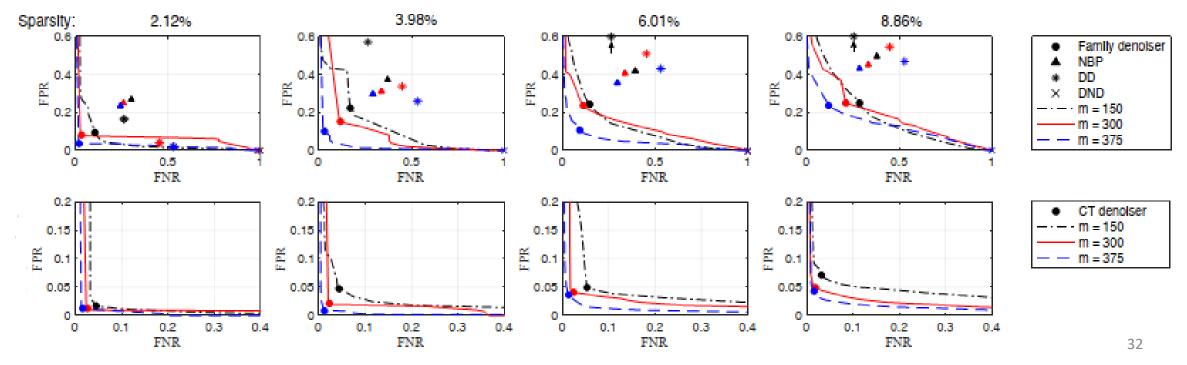
Numerical results – family and symptom SI

- As before, N=5000 patients; ρ =1% prevalence
- Families SI (family size F=4) *dependencies*
 - $\rho_f{=}1.5\%$ of families infected; $\rho_i{=}2/3$ of individuals within families
- Symptoms SI *non-identical*
 - Families w/symptoms ρ_1 =5%
 - Families without $\rho_2{=}1\%$
- R below entropy bound
 - SI reduces entropy
- Both types of SI help
- Dependencies more useful



Numerical results – contract tracing SI [Cao et al. 2022]

- Contact tracing (CT) and infections data simulated using susceptible, exposed, infectious, recovered (SEIR) model
- Compared to nonparametric belief propagation (NBP), definite defectives (DD), definitely nondefective (DND)
- CT SI (row2) > Family SI (row1) > {NBP, DD, DND}



Discussion

- Analogy between communication system and viral testing
- Contributions
 - Convert pooled tests to noisy linear inverse problem
 - GAMP solver
 - Use SI in GAMP; supports dependencies between patients
 - Contact tracing SI more dependencies further reduce # measurements
- More matrix design seems to matter less than decoding algo
- Future work
 - GAMP for quantitative PCR (multiplicative noise)

Thanks!

More details in our papers http://barondror.com/

If you liked the video, please like it and subscribe https://www.youtube.com/channel/UCKy5Pyk8pmxXGu316UU34VQ