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ABSTRACT

We consider an input x generated by an unknown station-
ary ergodic source X that enters a signal processing sys-
tem J , resulting in w = J(x). We observe w through a
noisy channel, y = z(w); our goal is to estimate x from y,
J , and knowledge of fY |W . This is universal estimation,
because fX is unknown. We provide a formulation that
describes a trade-off between information complexity and
noise. Initial theoretical, algorithmic, and experimental
evidence is presented in support of our approach.

1. INTRODUCTION

Universal algorithms [1–5] achieve the best possible per-
formance asymptotically – without knowing the input statis-
tics. These algorithms have had tremendous impact in
lossless compression, which is crucial for data backups
and transmissions. In sharp contrast, universal algorithms
have made much less impact in other areas.

Estimation algorithms attempt to recover an input from
noisy measurements (Figure 1). Numerous estimation prob-
lems have received great attention including the additive
noise scalar channel, y = x + z [6]; linear matrix multi-
plication with additive noise, y = Jx+z with applications
including compressed sensing [7–9], finance, medical and
seismic imaging; universal lossy compression [4, 5, 10],
where the goal is to find compressible x that is sufficiently
close to y; nonlinear regression, where J(x) is nonlinear;
and distributed signal processing.

In these estimation problems, the common goal is to
estimate the input x from knowledge of the noisy mea-
surements y and measurement system J . To do so, we
must exploit all statistical structure in x. A particularly
challenging type of statistical structure is the appearance
of spatial or temporal dependencies in data. In images,
such dependencies can be captured by dictionary learn-
ing or employing energy compacting transforms. In other
problems, the statistical dependencies might be more sub-
tle. Following the lead of universal lossless compression,
we assume that the input x was generated by an unknown
stationary ergodic source X . It is well known that sta-
tionary ergodic models capture the statistics of text files
well, and hence the success of universal lossless compres-
sors. Stationary ergodic models have also been incorpo-
rated in speech denoising and enhancement, and appear
prominently in hidden Markov models.

One approach to universal estimation relies on Kol-
mogorov complexity [11]. For a prospective x̂, the Kol-
mogorov complexity K(x̂) is the length of the shortest
computer program that can compute x̂. Donoho [12] pro-
posed a Kolmogorov-based estimator for the white scalar
channel, y = x + z. Despite related extensions to com-
pressed sensing [8, 9], what is missing in the literature is
a universal approach in arbitrary measurement systems
that would support noise and unknown stationary ergodic
input distributions.

We propose to perform universal estimation in (po-
tentially nonlinear) signal processing systems from noisy
measurements. The algorithmic component of our work
features a harmonious marriage of scalar quantization, uni-
versal lossless compression, and Markov chain Monte Carlo.
We evaluate the estimated input x̂ over a quantized grid
and optimize for the trade-off between information com-
plexity (lossless coding length) of x̂ and how well x̂ ex-
plains the measurements y. We report promising prelimi-
nary theoretical and numerical results.

2. INFORMATION COMPLEXITY
FORMULATION

We focus on the setting where the lengthsM of the output
y and N of the input x both grow to infinity, M,N →∞.
We further assume that their ratio is finite and positive,
limN→∞

M
N = δ > 0. Similar settings have been dis-

cussed in the literature, e.g., [13]. Since x was generated
by an unknown source, we must search for an estimation
mechanism that is agnostic to the specific distribution fX .

Kolmogorov complexity: For x ∈ RN , the Kolmogo-
rov complexity [11] of x, denoted by K(x), is the length
of the shortest computer program that can compute x. To
be more precise, K(x) is the length of the shortest input
to a Turing machine [14] that generates x and then halts.
We limit our discussion to Turing machines whose “in-
put tapes” consist of bits. Consider the shortest program
P(x) that generates x. From the perspective of a source
encoder [6], we say that P(x) is a code for x.

Having linked Turing machines [14] and data com-
pression [6], let us temporarily limit the discussion to dis-
crete valued x generated by a stationary ergodic source
X . Each such x is generated with probability pX(x), and
it is easily shown that the per-symbol Kolmogorov cod-
ing length K(x) converges to the entropy rate H almost
surely, limN→∞

1
NK(x) = H [6]. Noting that univer-

sal lossless compressors [1, 2] achieve H asymptotically



Figure 1. Measurement and estimation system: An input
x ∈ RN generated by an unknown stationary ergodic source
X is processed by a known (potentially nonlinear) operator J

to produce w = J(x) ∈ RL. A probabilistic noise operator z
that implies a known probability density fY |W (y|w = J(x)) is
applied to w, the measurements are y = z(J(x)). Our goal is to
estimate x using y ∈ RM and J , resulting in x̂ ∈ RN . Although
our emphasis is on real-valued w, x, y, discrete-valued signals
and operators are allowed.

for discrete valued stationary ergodic sources [6], we see
that these algorithms achieve the per-symbol Kolmogorov
complexity almost surely.

Kolmogorov sampler: For additive white Gaussian
noise, y = x+ z, Donoho [12] proposed the Kolmogorov
sampler,

x̂KS = argminx̂{K(x̂)− log(fZ(z = y − x̂))}.

For stationary ergodic X , x̂KS is sampled from the poste-
rior fX|Y (y|x), where the mean square error, E[(x̂KS −
x)2], is twice larger than the Bayesian minimum mean
square error (MMSE) [12].

In a later paper, Donoho et al. discussed a Kolmogorov
estimator for compressed sensing y = Jx [8]; their esti-
mator ignores noise, and is of limited practical interest.
For the noisy version of this problem, y = Jx+ z, Haupt
and Nowak [9] described a complexity measure that, when
optimized, produces the LASSO algorithm [15]. To the
best of our knowledge, Haupt and Nowak did not pursue
complexity based regularization beyond iid signals and
additive white Gaussian noise (AWGN).

Quantization and estimation: The overwhelming ma-
jority of real numbers have infinite Kolmogorov complex-
ity. Nonetheless, some scalars x ∈ RN can be represented
by a finite length P(x). In practice, it is impossible to
compute K(x) even for discrete alphabets. At the same
time, we have seen that universal lossless source codes [1,
2] achieve per-symbol Kolmogorov coding length almost
surely [6]. To represent continuous valued x̂, we apply a
scalar quantizer, Q : x̂ ∈ RN −→ x′ ∈ QN , and then
compress x′ = Q(x̂) with a universal lossless compres-
sor U with coding length U(x′), where quantization levels
Q ⊂ R consist of a finite subset of R, and performing an
optimization over x̂ ∈ QN reduces the complexity of the
estimation problem from infinite to combinatorial. Note
that we generate x′ by independently quantizing each en-
try of x with Q. This encoder first describes the quantizer
Q and then compresses Q(x). The coding length, which
we desire to minimize, is denoted by U(Q(x)) or U(x).

It would seem that we must search for a good scalar
quantizer Q (Section 3), but data-independent reproduc-
tion levels are of theoretical interest,
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AsN increases,R will quantize a broader range of values
of x to a greater resolution. An encoder based on R need
not describe the structure of the data-independent quan-
tizer, because N is known. That is, U(R(x)) only ac-
counts for the length of the universal code U .

Universal MAP estimation: We perform maximum a
posteriori (MAP) estimation over possible sequences x̂ ∈
RN , where the prior pX(x) = 2−U(x̂) utilizes the coding
length U(x̂) of some universal lossless compressor [1, 2],

x̂MAP = arg min
x̂∈RN

{U(x̂)− log(fY |W (y|w = J(x̂)))},
(1)

where we note that R(x̂) = x̂ for x̂ ∈ RN . Our MAP
estimator is applicable to any signal processing system J
and supports any probabilistic noise operators, it is closely
related to universal prediction [2, 3].

Estimation performance: We have promising prelim-
inary theoretical results using the data-independent quan-
tizer R. In universal lossy source coding of analog (con-
tinuous valued) sources [4], we have shown with Weiss-
man that x̂MAP (1) achieves the rate distortion function
for finite variance stationary ergodic sources in an appro-
priate asymptotic sense. That is, U(R(x̂)) offers a suf-
ficiently good approximation to K(x̂) in universal lossy
compression, where we chose U(x̂) to be empirical en-
tropy of blocks of q = O(log(N)) symbols in x̂. In
universal compressed sensing [16], we have shown with
Duarte that under minor technical conditions on fX , per-
forming MAP estimation over the discrete alphabetR con-
verges to the MAP estimate over the continuous distribu-
tion fX asymptotically, where we used i.i.d. zero-mean
Gaussian noise z ∈ RM with known variance. It remains
to be seen whetherR or other data-independent quantizers
are useful for arbitrary nonlinear measurement systems.

In terms of the mean square error, we would expect
x̂MAP to perform well in Donoho’s scalar channel set-
ting, y = x + z. With Duarte [16], we have promising
results for the compressed sensing (linear matrix multi-
plication) channel, y = Jx + z, where we approximated
x̂MAP (1) by a Markov chain Monte Carlo (MCMC) [17]
algorithm (Section 3). Figure 2 illustrates recovery re-
sults from Gaussian measurement matrices for a source
with i.i.d. Bernoulli entries with nonzero probability of
3%. Our MCMC algorithm outperforms `1-norm mini-
mization, which is a well-known compressed sensing re-
construction (estimation) algorithm [7], except when the
number of measurements M is low. Comparing MCMC
to the minimum mean square error (MMSE) achievable in
the Bayesian regime with known statistics [13], the square
error achieved by MCMC is three times larger. One is left
to wonder whether the mean square error performance of
our algorithm might also be double the MMSE, particu-
larly in the limit of infinite computation (Section 3).



Figure 2. Universal Markov chain Monte Carlo (MCMC) [16]
and `1-norm minimization [7] recovery results for a source with
i.i.d. Bernoulli entries with nonzero probability of 3% as a func-
tion of the number of Gaussian random measurements M for
different signal to noise ratio (SNR) values.

Taking Kolmogorov beyond MAP: The Kolmogorov
sampler x̂KS samples from the posterior [12]; it throws
away all the statistical information it has on signals x̂ that
differ from x̂KS . Seeing that the mean square error ob-
tained by x̂KS is double the MMSE, there is great po-
tential to reduce estimation error over our Kolmogorov-
based MAP estimator x̂MAP (1). We therefore propose
Kolmogorov-based conditional expectation,

x̂MSE = E[x|J, y]

=

∑
x̂∈RN x̂ · 2−U(x̂)fY |W (y|w = J(x̂))∑
x̂∈RN 2−U(x̂)fY |W (y|w = J(x̂))

,

where we employ the universal prior, pX(x̂) = 2−U(R(x̂)).
It is well known that conditional expectation achieves the
MMSE of the Bayesian regime, and this estimator should
perform well. Interestingly, when the signal to noise ratio
(SNR) is low, the Bayesian MMSE is sizable, and achiev-
ing double the MMSE is unimpressive. In these low SNR
settings, x̂MSE should estimate much better than x̂MAP .

In some signal processing systems, one wants to mini-
mize some other (not necessarily quadratic) distortion met-
ric D(x, x̂). The universal prior is readily invoked by
defining the Kolmogorov conditional probability,

pX|Y (x|y) =
pY |XpX

pY
∝ pY |XpX ,

and taking the minimizing expression gives the Kolmogorov-
based estimator for D(·),

x̂D = argmin
w

{ ∑
x̂∈RN

D(x̂, w)fY |W (y|w = J(x̂))2−U(x̂)

}
.

For scalar channels and iid noise, Sivaramakrishnan and
Weissman [18] described a universal denoising algorithm

that estimates x by x̂SW , its expected errorE[D(x, x̂SW )]
converges to the Bayesian risk asymptotically in an appro-
priate stochastic setting. For scalar channels and iid noise,
our expected estimation errorE[D(x, x̂D)] should also be
asymptotically optimal. The performance in arbitrary sig-
nal processing systems J is an open question.

3. ALGORITHMS

In principle, x̂MAP can be computed by evaluating the
Kolmogorov-based posteriors of |R|N possible sequences
R(x). This is better than continuous estimation, but still
computationally intractable. Instead, we perform this op-
timization using Markov chain Monte Carlo (MCMC) [5,
17], where U(x̂) = Hq(x̂) is the empirical entropy of
blocks of q = O(log(N)) symbols of x̂.

Markov chain Monte Carlo: We use MCMC [17] to
approximate x̂MAP , which is the globally optimal MAP
minimizer. To keep things simple, assume that x̂ ∈ RN is
a candidate estimate. Define the Boltzmann PDF,

fs(x̂) ,
1

ζs
exp(−s[Hq(x̂)− log(fY |W (y|w = J(x̂)))]),

(2)
where Hq(x) is the empirical entropy of blocks of q sym-
bols in x [2, 4, 5, 16], q = O(log(N)) to ensure conver-
gence of the empirical entropy to the entropy rate [6],
s > 0 is inversely related to temperature in an analogous
statistical physics heat-bath setting [17], and ζs is a nor-
malization constant. To sample from the Boltzmann PDF
(2), we use a Gibbs sampler: in each iteration, a single el-
ement x̂n is generated by resampling from the PDF, while
the rest of x̂ remains unchanged. The key idea is to reduce
temperatures slowly enough for the randomness of Gibbs
sampling to eventually drive MCMC out of any local min-
imum toward the globally optimal x̂MAP .

Adaptive quantizer: Jalali and Weissman [5] have
used MCMC to approach the fundamental rate distortion
(RD) limits [6] in lossy compression of binary inputs. For
continuous valued (analog) sources [4], using the data-
independent quantizerR in MCMC asymptotically achieves
the RD function universally for stationary ergodic contin-
uous amplitude sources. However,R grows with the input
length, slowing down the convergence to the RD function,
and is thus an impediment in practice.

To address this issue, we next propose an MCMC-
based algorithm that uses an adaptive quantizer Q. The
ground-breaking work by Rose on the discrete nature of
the Shannon codeboook for iid sources when the Shan-
non lower bound is not tight [19] suggests that, for most
sources of practical interest, restriction of the quantizer Q
to a smaller number of levels does not stand in the way of
attaining the fundamental compression limits. When em-
ployed on such sources, our latter algorithm zeroes in on
the finite quantizer, and thus enjoys rates of convergence
commensurate with the small-quantizer setting.

Numerical results: In universal lossy compression of
analog sources [4], we have developed an algorithm that
optimizes the quantizer for square error, and have promis-
ing preliminary results. Figure 3 compares results for an



Figure 3. Universal lossy compression: Rate R vs. distortion
D of entropy coding [20], results by Yang and Zhang [10], aver-
age rate and distortion of our universal lossy compression algo-
rithm [4], and the RD function [6] for length-15000 iid Laplace
inputs, fX(x) = 1

2
e−|x|.

iid Laplace input, fX(x) = 1
2e
−|x|, achieved by entropy

coding [20], a deterministic approach by Yang and Zhang
[10], and our universal MCMC algorithm [4].

In our universal compressed sensing work with Duarte
[16], we focused on development of a fast routine for op-
timizing the quantizer; this routine greatly accelerates the
algorithm. We have seen in Figure 2 for a source with
i.i.d. Bernoulli entries with nonzero probability of 3% that
MCMC outperforms `1-norm minimization, except when
the number of measurements M is low. We have addi-
tional results, but omit these for brevity; MCMC generally
estimates the input signal x well, but much work remains
to be done.
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