Maximum Likelihood Quantum Error Mitigation for Algorithms with a Single Correct Output

Dror Baron

February 2024
Information Theory and Applications Workshop
with Hrushikesh Pramod Patil and Huiyang Zhou

Motivation

- Quantum computing can provide major speedups over classical (non-quantum) counterparts
-However...

Motivation

- Quantum computing can provide major speedups over

 classical (non-quantum) counterparts- However...
- Quantum computations are noisy
- Classical transistors $\sim 10^{-27}$ error rate
- Quantum computations $\sim 10^{-4}$

Motivation

cnet.com

- Quantum computing can provide major speedups over

 classical (non-quantum) counterparts- However...
- \# qubits increasing
- Currently hundreds
- 10X per 2-3 years

Current paradigm

- Run S shots of quantum device
- Shots are pricey (e.g., \$0.03 on Amazon Braket)
- After each shot, measure n qubits
- Error mitigation extracts information from (many) noisy shots

Challenges

- Run S shots of quantum device
- Shots are pricey (e.g., \$0.03 on Amazon Braket)
- After each shot, measure n qubits
- Error mitigation extracts information from (many) noisy shots
- How to extract information? How many shots?

How to extract information from noisy shots?

Problem formulation

- Quantum computer generates single correct bitstring $x_{0} \in\{0,1\}^{n}$
- Many quantum algorithm can generate many possible outputs
- Bernstein-Vazirani has single output
- Grover search may have single output

Problem formulation

quora.com

- Quantum computer generates single correct bitstring $x_{0} \in\{0,1\}^{n}$
- Many quantum algorithm can generate many possible outputs
- Bernstein-Vazirani has single output
- Grover search may have single output
- S shots, $S \in\{1, \ldots, S\}$
- Noisy observation $y_{s}=x_{0} \oplus$ noise $_{s,}$ noise $_{s} \in\{0,1\}^{n}$

columbia.edu

What noise?

- Recall $y_{s}=x_{0} \oplus$ noise $_{s}$
- Symmetric i.i.d. noise: bit flips with probability p
- We're assuming symmetric i.i.d.; more later
- $\operatorname{Pr}\left(\mathrm{y}(\mathrm{i})=1 \mid \mathrm{x}_{0}(\mathrm{i})=0\right)=\mathrm{p}$
- $\operatorname{Pr}\left(\mathrm{y}(\mathrm{i})=0 \mid \mathrm{x}_{0}(\mathrm{i})=1\right)=\mathrm{p}$
- $p<0.5$

How to estimate x_{0} ?

- With S shots, take mode (most common) length-n measurement
- For symmetric i.i.d. noise, mode identifies x_{0} as $S \rightarrow \infty$
- Pro: simple estimator
- Con: S must be large

Can we do better than mode?

- Matrix free error mitigation (M3) [Nation et al. 2021]
- Considers transition probabilities between all observed strings
- Must observe x_{0} at least once
- S exponential in n

Scalable mitigation of measurement errors on quantum computers
Paul D. Nation, Hwajung Kang, Neereja Sundaresan, and Jay M. Gambetta
IBM Quantum, Yorktown Heights, NY tosgs USA IBM Quantum, Yoritown Heights, N1 MO598 USA
(Dated: August 31, 2021)
We present a method for mitigating measurement errors on quantum computing platforms that
does not form the full assignment matrix, or its inverse, and works in a subspace definind by the noisy does not form the full assignuent matrix, or its inverse, and works in a subspace defived by the noisy
input bitestrings. This method accommodates both uncorrelated and correlated errors, and allows input bitsstrings. This method accommodates both uncorrelated and correlated errors, and allows
for computing accurate error bounds. Additionally, we detail a matrixefree preconditioned iterative solution method that converges in $\mathcal{O}(1)$ steps that is performant and uses crders of magnitude less memory than direct factorization. Wie demonstrate the validity of our method, and mitigate errors in a few seconds on numbers of qubits that would otherwise be intractable.

I. Introduction

Recently, rapid developments in the fabrication, control, and deployment of quantum computing systems has brought qubit counts to ~ 100, where it might be possj-
ble to show advantage oser classical ble to show advantage over classical computation meth-
ods in one or more limited cases $|1-3|$. However, such ods in one or more limited cases $[1-3)$. However, such conspire to limit the effectiveness of quantum computers at tackling problems of appreciable scale. To counteract these effects, researchers have turned to mitigation methods that approximately canoel quantum gate $\mid\langle-10|$ and measurement assignment $[11-19$ errors. For short-depth
quantum circuits that can be executed on current genquantum circuits that can be executed on current gen-
eration hardware, measurement errors play an out-sized role, and their correction is critical to many near-term experiments $[20-27]$.
In the canonical situation where initialization noise is minimal, measurement errors over N-qubits can be treated classically and satisfy
$\vec{p}_{\text {naiay }}=A \vec{p}_{\text {dideal }}$,
(1)
where $\vec{p}_{\text {moiny }}$ is a vector of noisy probabilities returned by the quantum system, $\vec{p}_{\text {ideal }}$ is the probabilities in absence of measurement errors (but still includes e.g. gate errors), and A is the $2^{N} \times 2^{N}$ complete assignment matrix (A-matrix) where element $A_{\text {rec,ecol }}$ is the probability of
bit-string col being converted to bit-string rou by the bit-string col being converted to bit-string row by the measurement error process
While computing A requires executing 2^{N} circuits, it is often the case that errors on multiple qubits can be well approximated using at most $\mathcal{O}(N)$ calibration circuits; the A-matrix can be approximated efficiently.
$\vec{p}_{\text {noing }} \|_{2}^{2}$, where $\vec{p}_{\text {deat }}$ is constrained to be positive, is of-
ten used in place of direct solution $|12-14,16,28|$. A-
though physically appealing, the run times of these meththough physically appealing, the run times of these meth-
ods are orders of magnitude longer than those of direct ods are orders of magnitude longer than those of direct techmiques. Alternatively, it has been shown that quasj-
probabilities can be used provided that one mitigates exprobabion values $[4,11,29]$. As proven in Ref. [11], these
pectation quasi-probabilities provide an unbiased estimate for the expectation value ξ of an operator O, with a spectral
radius of one, that is diagonal in the computational basis

$$
\varepsilon=\sum_{i=0}^{2^{x}-1}\left[O A^{-1} \vec{p}_{\text {nainr }}\right]_{i}
$$

(2)

Near-term algorithms such as the ubiquitous Variational Quantum Eigensolver (VQE) $[20,30]$ and quantum machine learning $[22,27]$ rely on the computation of expectation values, making the correction of measurement errors in these quantities an important step along the road to quantum advantage.
Current measurement mitigation techniques utilize the full 2^{N}-dimensional probability space, and thus do not
scale beyond a handful of qubits. A truncation schem was developed in [23], however it did so at the loss of measurement information, and still required explicit construction of the full A-matrix. Creating a scalable mitigation strategy requires reducing the dimensionality of the linear system in
A itself. Fortunately, present day cloud-acceasible quantum computing systems have measurement error rates of a few-percent or less, see Table 1 , indicating it is possible to view the measurement error process as a small correction to the ideal probability distribution; measurement

Do we really need to observe x_{0} ?

Toy example

- $\mathrm{n}=5$ qubits
- Correct bitstring x0 $=00000$
- Noisy observations ($\mathrm{S}=5$ shots)
- $\mathrm{y}_{1}=00001$
- $y_{2}=00010$
- $y_{3}=00100$
- $y_{4}=01001$
- $y_{5}=10000$
- Focusing on qubit \#4, it was mostly measured correctly

Parrot example

- $\mathrm{n}=1000$ qubits
- Io Parrot likes messy environment
- She flips 5-10\% of bits
- Each y_{s} has many errors
- Very unlikely to ever sample correct x_{0}
- Take S=100
- Majority vote should work well

Qubit-wise majority vote (QMV)

- For each qubit, $\mathrm{i} \in\{1, \ldots, \mathrm{n}\}$, look at S corresponding bits
- Vote majority among S bit observations
\checkmark Simple
\checkmark No need to observe x_{0}
\checkmark QMV $=$ maximum likelihood (ML) for symmetric i.i.d. noise
\checkmark QMV is classical algorithm; more possible applications

How many shots does QMV need?

Error analysis arxiv.org/abs/2402.11830

- Error = at least $\mathrm{S} / 2$ bits flipped
- Showed $\operatorname{Pr}(\mathrm{S} / 2$ flipped $)=(4 \mathrm{p}(1-\mathrm{p}))^{\mathrm{s} / 2}$ poly(S)
- What about $>\mathrm{S} / 2$ bits flipped?
- Multiplicative factor $\frac{1-p}{1-2 p}$
- S logarithmic in n makes Pr(error) small enough

Required S arxiv.org/abs/2402.11830

- Define $p=0.5-\varepsilon$; how close we are to $50-50$
- Need $S=\frac{0.5 \ln (n)}{\varepsilon^{2}}$
- Pro: logarithmic in n
- Con: p might be close to 0.5

Numerical results

Typical result arxiv.org/abs/2402.11830

- Ran on ibm_Sherbrooke quantum machine
- $\mathrm{n}=20$ qubits
- Correct output $x_{0}=01010101010101010101$
- Mistakes in red

Shots S	Mode	M3	QMV (new)
1024	01110101010111110101	01110101010111110101	01010101010101010111
4096	01010111000101011101	01010111000101011101	01010101010101010111
16384	01010101011101010111	01000101010101010101	01010101010101010101

- QMV identified x_{0} perfectly; qubit \#19 corrected

Discussion

Discussion

- Majority vote > M3 > mode
- Quantum machines don't have symmetric i.i.d. bit flips
- Asymmetric? See paper (weighted vote)
- Some noisy individual qubits? QMV sensitive to this scenario
- Multiple correct outputs? See paper + ongoing work

Thanks!

