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Abstract

Motivated by the Markov Chain Monte Carlo (MCMC) approach to the compression of discrete

sources developed by Jalali and Weissman, we propose a lossy compression algorithm for analog sources

that relies on a finite reproduction alphabet, which grows with the input length. The algorithm achieves,

in an appropriate asymptotic sense, the optimum Shannon theoretic tradeoff between rate and distortion,

universally for stationary ergodic continuous amplitude sources. We further propose an MCMC-based

algorithm that resorts to a reduced reproduction alphabet when such reduction does not prevent achieving

the Shannon limit. The latter algorithm is advantageous due to its reduced complexity and improved rates

of convergence when employed on sources with a finite and small optimum reproduction alphabet.

I. INTRODUCTION

Lossy compression of analog sources is a pillar of modern communication systems. Despite numerous

applications such as image compression [2, 3], video compression [4], and speech coding [5–7], there is

a significant gap between theory and practice.

Parts of the research were performed when the first author was with the Electrical Engineering Department at the Technion,

Israel. Subsets of the work appeared in [1].
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A. Entropy coding

Many practical lossy compression algorithms employ entropy coding, where scalar quantization is

followed by lossless compression (ECSQ). ECSQ has motivated much work into optimization of scalar

quantizers [8–10], whereas the translation to bits can use Huffman [11] or arithmetic [12, 13] codes.

Despite its simplicity and elegance, even for independent and identically distributed (iid) sources, ECSQ

operates far from the rate distortion (RD) function [13, 14], the fundamental limit of lossy compression

(cf. Figure 1 for an example). For non-iid sources, ECSQ may compare even less favorably with the

fundamental RD limit.

In order to bridge the gap between ECSQ and the RD function, vector quantization (VQ) converts an

entire vector to a codeword [7, 15, 16], in contrast to scalar quantization, which compresses individual

scalar input elements. VQ provides a better trade-off between rate and distortion as the vector dimen-

sion increases, but increased complexity is required [17]. The significant computation required by VQ

necessitates developing computationally feasible alternatives.

B. Related work

For finite alphabet sources, recent advances have demonstrated that the RD limit can be approached

asymptotically [18–20] by partitioning an input into sub-blocks, where a Shannon-style random code-

book [13, 14] is applied to each sub-block. Some of these schemes can compress universally without

knowing the source statistics beforehand, but it is challenging to generate a codebook distribution whose

statistics differ from those of the input statistics [21].

Lossy compression over a finite alphabet can also be performed by directly mapping the entire input

to an output sequence while accounting for the trade-off between the compressibility of the output and

the distortion between the input and output sequences. This optimization can be deterministic [22] or

stochastic [23] in nature. Directly mapping to the output sequence effectively quantizes the entire input

– a long sequence – into a large output codebook, and achieves the RD limit for stationary ergodic finite

alphabet sources universally. Another promising recent approach to (non-universal) lossy compression

relies on algebraic codes [24].

For analog sources, less progress has been made in developing theoretically-justified compression

algorithms. Some results have been derived specifically for the high-rate regime, where the Shannon

lower bound is asymptotically tight [25] under appropriate technical conditions imposed on the probability

density function of the source and the distortion measure. In particular, in the limit of low distortions

(high-rate) the RD limit has been characterized for mixtures of probability distribution functions (pdf’s)
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Fig. 1. Laplace source: Comparison of entropy coding (ECSQ), results by Yang and Zhang [33], average rate and

distortion of Algorithm 2 (MCMC) over 10 simulations, and the RD function. (n = 1.5 · 104, |Z| = 9, r = 50,

k ≈ 1
2 log|Z|(n).)

where one distribution is discrete and the other continuous [26, 27]. For example, the sparse Gaussian

source is a mixture pdf; bounds on its RD function have been provided [28–31].

Despite the theoretical insights in the high-rate regime, compression of analog sources at low-to-medium

rates is of interest in many applications [2–5]. There do exist special input pdf’s for which entropy coding

approaches the RD function [32] in the low-rate limit, but the low-rate regime is challenging in general.

We aspire to develop results of general applicability and not be limited to specific pdf’s with fortuitous

properties.

C. Contributions

The key point in our approach to fixed-to-variable length compression of analog sources is to quantize

to discrete reproduction levels, and then apply a compression algorithm similar to that of Jalali and

Weissman [23], which uses the stochastic optimization approach of Markov chain Monte Carlo (MCMC)

simulated annealing, as pioneered in [34]. A careful choice of the set of reproduction levels, growing

appropriately with input length both in size and in resolution, achieves the RD function despite the

analog nature of the source. A somewhat similar approach was suggested by Yang et al. [22, 33] using
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deterministic optimization techniques. Note, however, that Yang and Zhang [33] require availability of a

training sequence, and so their algorithm is not universal. Although it is possible to apply deterministic

optimization in a universal setting by partitioning the input into blocks, Yang and Zhang mention that

this approach results in a performance loss of 0.2–0.3 dB [33].

Our first contribution is a lossy compression algorithm for analog sources that relies on a data-

independent reproduction alphabet that grows with the input length. This algorithm asymptotically

achieves the RD function universally for stationary ergodic continuous amplitude sources. However, the

reproduction alphabet grows with the input length, slowing down the convergence to the RD function,

and is thus an impediment in practice.

To address this issue, we next propose an MCMC-based algorithm that uses an adaptive reproduction

alphabet. The ground-breaking work by Rose on the discrete nature of the reproduction alphabet for

iid sources when the Shannon lower bound is not tight [35] suggests that, for most sources of practical

interest, restriction of the reconstruction to a rather small fixed-size alphabet does not stand in the way

of attaining the fundamental compression limits. Indeed, at low rates even a binary reproduction alphabet

is often optimal [32]. When employed on such sources, our latter algorithm zeroes in on the same finite

reproduction alphabet, and thus enjoys rates of convergence commensurate with the finite-alphabet setting.

In order to render this adaptive algorithm computationally feasible, we develop a method to update the

optimal reproduction levels rapidly. Utilizing this computational feature, our adaptive algorithm provides

faster computation, achieves the RD function universally, and in some cases the smaller reproduction

alphabet accelerates convergence to the RD function. Consequently, the adaptive algorithm is more suitable

in practice. We emphasize that our algorithms are both universal, requiring no knowledge of the source

statistics.

The remainder of the paper is organized as follows. We provide background information in Section II.

Our first, brute force algorithm is described in Section III, followed by the adaptive reproduction alphabet

algorithm in Section IV. Numerical results are reported in Section V. We complete the paper with a

discussion in Section VI. Proofs appear in appendices, in order to make the main portion of the manuscript

easily accessible.

II. BACKGROUND

A. Notation and definitions

Consider a stationary ergodic real-valued source X = {Xi, i ≥ 1}. The input to our algorithms

is xn = x1x2 . . . xn, which is an individual realization of the random vector Xn. The input xn is
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compressed using an encoder e : X n → {0, 1}+ that maps xn to a finite output string e(xn). The

decoder d : {0, 1}+ → Yn maps the bit string back to a length-n output yn over the reproduction

alphabet Y , which may be a continuous or discrete subset of the real line. The output yn is the lossy

approximation of xn.

We assess the performance of an encoder-decoder pair relative to the trade-off between rate and

distortion [13, 14]. The rate of such a pair is defined as R = E[ 1
n |e(X

n)|], the expected number of bits

per description of a source symbol, where | · | denotes length, size, or cardinality, and E[·] is expectation.

The distortion D = E[dn(Xn, yn)] quantifies the expected per-symbol distortion,

dn(xn, yn) ,
1

n

n∑
i=1

d(xi, yi), (1)

where d : R × R → R+ measures the distortion. For concreteness in what follows, we assume the

distortion is the square of the error d(xi, yi) = (xi − yi)
2, but our approach readily carries over to

accommodate `p distortion measures.

We define R(X,D), the RD function of a stationary ergodic source X , in an operational manner as

follows. Let Ci(X,D) be the smallest-cardinality codebook for input blocks of length i generated by X ,

such that the expected distortion between the input block xi and the nearest codeword in Ci(X,D) is at

most D. The rate Ri(X,D) is defined as the normalized log-cardinality of the codebook, Ri(X,D) =

1
i log2(|Ci(X,D)|). Finally, R(X,D) is the limit of Ri(X,D) over increasingly long blocks,

R(X,D) = lim
i→∞

1

i
log2(|Ci(X,D)|). (2)

B. Lossy compression using MCMC

We describe a variant of the scheme in [23] that compresses an input xn to an output yn over a

finite alphabet Y ⊆ R, whose cardinality depends on n. This algorithm will later be employed as the

main building block for compressing an analog source. The encoder approximates xn by yn, which

is compressed using the context tree weighting (CTW) universal lossless compression algorithm.1 The

approximation yn is chosen to provide a good trade-off between the coding length required for yn and

the distortion with respect to xn. The decoding procedure is straightforward; the output bits are passed

through the CTW decompressor to retrieve yn.

1We prefer CTW [36], because for context tree sources it has lower expected redundancy than Lempel-Ziv based schemes [37]

or adaptive arithmetic coding based on full-tree Markov models [33].
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Denote the empirical symbol counts by mk(y
n, uk)[a], i.e.,

mk(y
n, uk)[a] , |{k < i ≤ n : yii−k = uka}|,

where k is the context depth, a ∈ Y , uk ∈ Yk, and uka denotes concatenation of uk and a. Define the

k-depth conditional empirical entropy as

Hk(y
n) , − 1

n

∑
a,uk

mk(y
n, uk)[a] log

(
mk(y

n, uk)[a]∑
a′ mk(yn, uk)[a′]

)
, (3)

where log(·) is the base-two logarithm, and we use the convention wherein 0 log(0) = 0. For k =

o(log(n)), the difference between the CTW coding length and the empirical conditional entropy is o(1)

uniformly over yn ∈ Yn [36]. (Seeing that the input xn and output yn might have different statistics, k

must grow with n even if xn is iid or is generated by a known-depth Markov source.) We define the

energy ε(yn) corresponding to yn by

ε(yn) , n[Hk(y
n)− βdn(xn, yn)], (4)

where β < 0 is the slope of the RD function at the point we want to attain. The Boltzmann probability

mass function (pmf) is

fs(y
n) ,

1

Zs
exp{−sε(yn)}, (5)

where s > 0 is inversely related to temperature in simulated annealing [34], and Zs is the normalization

constant, which does not need to be computed.

Ideally, our goal is to compute the globally minimum energy solution x̂n,

x̂n , arg min
wn∈Yn

ε(wn) = arg min
wn∈Yn

[Hk(w
n)− βdn(xn, wn)]. (6)

Computation of x̂n involves an exhaustive search over exponentially many sequences and is thus infea-

sible. We use the stochastic optimization approach of Markov chain Monte Carlo (MCMC) simulated

annealing [34] to approximate the globally minimum solution, in contrast to the deterministic approach

of Yang et al. [22]. We denote the resulting approximation by yn.

Because it is difficult to sample from the Boltzmann pmf (5) directly, we instead use a Gibbs sampler,

which computes the marginal distributions at all n locations conditioned on the rest of yn being kept

fixed. For each location, the Gibbs sampler resamples from the distribution of yi conditioned on yn\i ,

{yn : n 6= i} as induced by the joint pmf in (5), readily computed to be

fs(yi = a|yn\i) =
1∑

b exp
{
−s
[
n∆Hk(yi−1byni+1, a)− β∆d(b, a, xi)

]} , (7)
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where ∆Hk(y
i−1byni+1, a) is the change in Hk(y

n) (3) when yi = a is replaced by b, and ∆d(b, a, xi) =

d(b, xi)− d(a, xi) = (b− xi)2 − (a− xi)2 is the change in distortion. We refer to the resampling from

a single location as an iteration, and group the n possible locations into super-iterations.2

During the simulated annealing, the inverse temperature s is gradually increased, where in super-

iteration t we use s = O(log(t)) [23, 34]. In each iteration, the Gibbs sampler modifies yn in a random

manner that resembles heat bath concepts in statistical physics. Although MCMC could sink into a local

minimum, we decrease the temperature slowly enough that the randomness of Gibbs sampling eventually

drives MCMC out of the local minimum toward the set of minimal energy solutions, which includes x̂n

(6), because large s favors low-energy yn. Pseudo-code for our encoder appears in Algorithm 1 below.
ALGORITHM 1: LOSSY ENCODER WITH FIXED REPRODUCTION ALPHABET

INPUT: xn ∈ Rn, Y , β, c, r

OUTPUT: bit-stream

PROCEDURE:
1) Initialize y by quantizing x with Y
2) Initialize mk(·, ·) using y
3) for t = 1 to r do // super-iteration
4) s← c log(t) for some c > 0 // inverse temperature
5) Draw permutation of numbers {1, . . . , n} at random
6) for t′ = 1 to n do
7) Let i be component t′ in permutation
8) Generate new yi using fs(yi = ·|yn\i) given in (7) // Gibbs sampling
9) Update mk(·, ·)[·]

10) Apply CTW to yn // compress outcome

III. UNIVERSAL ALGORITHM WITH DATA-INDEPENDENT REPRODUCTION ALPHABET

Let us consider how Algorithm 1 can be used to compress analog sources. We will see that choosing

the reproduction alphabet Y to be a finite subset of R (but growing with the input length n in a data-

independent way) achieves the RD function.

Let us assume that the variance of source symbols emitted by X is finite, and consider the following

data-independent reproduction alphabet,

Y ,
{
−γ

2

γ
,−γ

2 − 1

γ
, . . . ,

γ2

γ

}
, γ = dlog(n)e, (8)

where d·e denotes rounding up. In words, Y is a quantization of the interval [−γ, γ] to resolution 1/γ.

Other choices of Y also allow to demonstrate various RD results; an examination of (25) indicates that

2We recommend an ordering where each super-iteration scans a permutation of all n locations of the input, because in this

manner each location is scanned fairly often. Other orderings are possible, including a completely random order as prescribed

by Jalali and Weissman [23].
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slower-growing γ(n) also achieves the RD function. The essential point is that Y quantizes a wider

interval with finer resolution as n is increased, and |Y| increases sufficiently slowly with n.

To prove achievability of the RD function asymptotically, we first prove that a global optimization

(6) that determines x̂n followed by lossless compression with CTW [36] achieves the RD function.

Yang et al. [22, 33] proved a similar result for their deterministic algorithm while relying on a different

reproduction alphabet; our contribution is to prove achievability using the data-independent reproduction

alphabet Y .

Theorem 1: Consider square error distortion (1), let X be a finite variance stationary and ergodic source

with RD function R(X,D) (2), and use the data-independent reproduction alphabet Y (8) to approximate

xn by the globally minimum energy solution x̂n (6). Then the length of context tree weighting (CTW) [36]

applied to x̂n converges as follows,

lim sup
n→∞

E

[
1

n
|CTW (x̂n)| − βdn(xn, x̂n)

]
≤ min

D≥0
[R(X,D)− βD]. (9)

Note that the lim sup in (9) is actually a limit since the expectation on the left hand side is lower

bounded by the right hand side for any scheme and any n, cf., e.g., [22, 23]. The detailed proof appears

in Appendix A, and we feature some highlights here. In order to prove achievability for the continuous

alphabet source X , we construct a near-optimal codebook for a given input length n [14], and then

quantize the components of every codeword in the codebook to Y . As n is increased, Y quantizes

a wider interval of values more finely. The wider interval ensures that outlier source symbols have

a vanishing effect on the distortion, and finer quantization provides near-optimal distortion within the

interval. Therefore, we have achievability for the continuous amplitude source X via the finite alphabet

Y .

What is the RD performance of x̂n? Keeping in mind that the resolution of the quantizer Y is 1/γ,

for a rate R = 1
nCTW (x̂n) we expect the distortion between xn and x̂n (1) to obey

dn(xn, x̂n) ≥ D(R) +O(γ−2) = D(R) +O(log(n)−2).

(We could decrease the excess distortion O(γ−2) by choosing a larger data-independent reproduction

alphabet. But this approach can only go so far to improve RD performance, because the redundancy or

excess coding length above the entropy rate of CTW is O(log(n)/n) [36], and even in a non-universal

setting the RD performance approaches the RD function gradually as n is increased [38].) In terms of

rate, for a distortion D = dn(xn, x̂n) the slope β of the RD function yields

1

n
CTW (x̂n) ≥ R(D)− βO(γ−2).
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Now consider running Algorithm 1 instead of the global energy minimization (6) using the data-

independent reproduction alphabet Y . The constant c used in Line 4 of Algorithm 1 plays a crucial role.

If c is large, then the Boltzmann pmf (5) favors low-energy sequences too greedily, and the algorithm

might get stuck in local minima. On the other hand, there exists a universal constant c1 that does not

depend on n such that for c < c1 we obtain universal performance. To understand why this happens,

observe that Algorithm 1 optimizes over |Y|n possible outputs. As long as c < c1, there is a sufficiently

large probability to transition between any two outputs, and the algorithm cannot get bogged down in a

local mimimum. Therefore, in the limit of many iterations Algorithm 1 converges in distribution to the

set of minimal energy solutions, and we enjoy the same RD performance as in Theorem 1. We refer the

reader to Geman and Geman [34] for further discussions relating to the choice of c1. The proof appears

in Appendix B.

Theorem 2: Consider square error distortion (1), let X be a finite variance stationary and ergodic source

with RD function R(X,D) (2), and use Algorithm 1 with the data-independent reproduction alphabet

Y (8) and sufficiently small c < c1. Let ynr be the MCMC approximation to xn after r super-iterations.

Then the length of context tree weighting (CTW) [36] applied to ynr converges as follows,

lim
n→∞

lim
r→∞

E

[
1

n
|CTW (ynr )| − βdn(xn, ynr )

]
n→∞−→ min

D≥0
[R(X,D)− βD].

Theorem 2 is an information theoretic result saying that for sufficiently large block length n and

number of super-iterations r, we come arbitrarily close to achieving the fundamental compression limits

of the source. In practice, one can only take as many iterations as the computational power affords.

It is also important to note that Theorems 1 and 2 are stated in terms of achieving the (R(β), D(β))

pair at a certain slope β that we want to attain. However, in practice the user will often be interested

in achieving a prescribed rate R or distortion D. In this case, it is possible to compute the requisite

D(R) or R(D) using a simple line search algorithm [39], and there is no need to compute the entire

(R(β), D(β)) curve.

An important feature of the algorithm is that each iteration of Lines 7–9 requires computation that is

proportional to the context depth k and alphabet size |Y| [23]. Because the alphabet grows slowly in

n, the per-iteration computational costs are modest. Each super-iteration contains n iterations, and so its

computation is O(nk|Y|) = o(n log3(n)). Decoding is also fast. We first decompress CTW [36], and the

finite alphabet is then mapped to our data-independent reproduction alphabet Y .

It is also noteworthy that our results could be modified to support other distortion metrics. For example,

if we used `p distortion, then a technical condition E[|X|p] <∞ ensures that outlier values in xn with
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|xi| > γ do not increase the distortion by much. The results also apply for some other distortion metrics

but are not fully general, because of the possible presence of outliers in the data.

Although promising from a theoretical perspective, Algorithm 1 is of limited practical interest. In order

to approach the RD function closely, Y may need to be large, which slows down the algorithm. We focus

on using an adaptive reproduction alphabet to improve the algorithm.

IV. ADAPTIVE REPRODUCTION ALPHABET ALGORITHM

Our approach to overcome the disadvantages of large alphabets (Section III) is inspired by the ground-

breaking work by Rose on the discrete nature of the reproduction alphabet for iid sources when the

Shannon lower bound is not tight [35]. In many cases of interest, a small reproduction alphabet achieves

the RD function of an analog source. Indeed, at sufficiently low rates even a binary reproduction alphabet

is sometimes optimal [32]. We thus focus on an algorithm that, while supporting the possibility that the

reproduction alphabet must be large, also supports a possible reduction of the alphabet size, while allowing

the actual reproduction levels to adapt to the input. The possibility of having a large alphabet is conducive

to our theoretical statements, but we show numerically in Section V that in practice a small adaptive

alphabet will suffice at low rates.

A. Adaptive reproduction levels

Following the approach of Yang and Zhang [33], we map the input xn to a sequence zn over a finite

alphabet Z , where the actual output yn is derived via a scalar function yi = a(zi). Ideally, the function

a(·) should minimize expected distortion. Because we focus on square error distortion, the optimal a∗(·)

is the conditional expectation [33],

a∗(α) = E[xi|zi = α] =

∑
i:zi=α

xi∑
i:zi=α

1
, ∀α ∈ Z. (10)

Note that a∗(α) can be computed universally without knowing the input source X .

The encoder knows xn and can compute a∗(·), but the decoder does not have access to xn. Therefore,

the encoder describes a quantized version of a∗(α) to the decoder for each α ∈ Z ,

a∗q(α) ,
da∗(α)∆e

∆
. (11)

Theorem 1 indicates that the data-independent reproduction alphabet Y (8) quantizes a sufficiently wide

interval [−γ, γ] with sufficiently fine resolution 1/γ, and so a quantizer resolution 1
∆ ≈ γ need only

select from 2γ2 + 1 = 2dlog(n)e2 + 1 levels. Therefore, each such quantization level can be encoded
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using ≈ log((log(n))2) + 1 bits, and it suffices to allocate µ log(log(n)) bits, where µ > 2. We observe

that it might be advantageous to allocate more bits to encode a∗q(α) for symbols α ∈ Z that appear more

times in zn, but leave such optimizations for future work. Nonetheless, if some α ∈ Z does not appear

in zn, then there is no need to encode its numerical value. We expend one flag bit per character of Z to

describe the effective alphabet Ze = Ze(zn), where Ze ⊆ Z is the subset of the reproduction alphabet Z

that appears in zn. Because |Z| = |Y| = 2dlog(n)e2 + 1, only O(log2(n)) flag bits are needed. In fact,

because zn can be described using any |Ze| symbols out of |Y|, it suffices for the encoder to describe

the cardinality of Ze using O(log(log(n))) bits, which is insignificant.

The energy function (4) must be modified to support adaptive alphabets as follows,

εa(z
n) , n[Hk(z

n)− βda(xn, zn)] + µ log(log(n))|Ze(zn)|, (12)

where µ log(log(n))|Ze| bits are used to encode the reproduction levels that appear in the effective

alphabet Ze, da(xn, zn) is distortion with the adaptive alphabet,

da(x
n, zn) = dn(xn, a∗q(z

n)) =
1

n

n∑
i=1

(xi − a∗q(zi))2, (13)

a∗q(z
n) is shorthand for the n-tuple obtained by applying a∗q to the components of zn, and a∗q(·) is

computed using (10) and (11). These definitions require to modify the previous Gibbs sampler (7) as

follows,

fs(zi = a|zn\i)

=
1∑

b exp
{
−s
[
n∆Hk(zi−1bzni+1, a)− β∆da(b, a, zn) + µ log(log(n))∆Ze(b, a)

]} , (14)

where

∆da(b, a, z
n) , n

[
da(x

n, zi−1bzni+1)− da(xn, zi−1azni+1)
]

(15)

is the change in distortion using the adaptive alphabet (13), and ∆Ze(b, a) is the change in the size of

the effective alphabet when zi = a is replaced by b. Alternately, the optimization routine can loop over

different alphabet sizes |Z| without accounting for |Z| in the energy (12); this latter approach was used

in our simulations (Section V).

The key point is that if a reduced alphabet yields similar distortion results without increasing the coding

length, then the modified energy function (12) induces a smaller effective Ze. Motivated by the theoretical

results by Rose [35] and our numerical results (Section V), for many analog sources of practical interest

a small alphabet offers good and in some cases optimum RD performance. In such cases, the adaptive

alphabet algorithm is advantageous.
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Even if the entire alphabet is used, i.e., Ze = Z , then the location of the reproduction levels is

optimized via a∗(·) in lieu of the uniform quantization used in Y (8). Consequently, if we allow the

adaptive alphabet algorithm to use Z with the same cardinality of Y as in Algorithm 1, then the RD

performance can only improve.

We now state formally that the adaptive alphabet algorithm achieves the RD function asymptotically

without prior knowledge of the source statistics. As before, our result relies on the existence of a universal

constant c2 such that for c < c2 the transition probabilities between the |Z|n possible outputs are

sufficiently large.

Theorem 3: Consider square error distortion (1), let X be a finite variance stationary and ergodic

source with RD function R(X,D) (2), use Z with cardinality |Z| = 2dlog(n)e2 + 1 and sufficiently

small c < c2 in Algorithm 2, and let a∗q(z
n
r ) be the MCMC approximation to xn after r super-iterations.

Then the length of context tree weighting (CTW) [36] applied to znr converges as follows,

lim
n→∞

lim
r→∞

E

[
1

n
|CTW (znr )| − βda(xn, znr )

]
n→∞−→ min

D≥0
[R(X,D)− βD].

The formal proof appears in Appendix C. The key point is that adaptive reproduction levels offer

pointwise improvement over the data-independent reproduction alphabet Y from Section III, per the

same alphabet size.

B. Fast computation

An important contribution by Jalali and Weissman [23] was to show how to compute ∆Hk(y
i−1byni+1, a)

and ∆d(b, a, xi) rapidly. Without this computational contribution, the encoder would be impractical. The

adaptive algorithm updates ∆Hk(z
i−1bzni+1, a) in an analogous manner. However, whereas ∆d(b, a, xi) =

(b− xi)2 − (a− xi)2 is trivial to compute for the data-independent reproduction alphabet Y (8), in our

case ∆da(b, a, z
n) (15) requires to re-compute da(·, ·), which depends on a∗q(·). Unfortunately, modifying

a single location in zn may change the distortion for numerous symbols.

We now show how to compute ∆da(b, a, z
n) rapidly for the adaptive reproduction alphabet algorithm.

To do so, we evaluate da(xn, zn),

da(x
n, zn) =

1

n

n∑
i=1

d(xi, a
∗
q(zi)) (16)

=
1

n

∑
α∈Z

∑
{i: zi=α}

(
xi − a∗q(α)

)2 (17)

=
1

n

∑
α∈Z

 ∑
{i: zi=α}

(xi)
2 − 2a∗q(α)xi + (a∗q(α))2

 , (18)
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where (16) uses the definitions of dn(·, ·) and da(·, ·) in (1) and (13), respectively, and (17) partitions

zi, i ∈ {1, . . . , n}, into the different symbols α ∈ Z and invokes the definition of square error distortion.

Combining (10) and (11),

a∗q(α) =
dE[xi|zi = α]∆e

∆
=

⌈∑
{i: zi=α} xi∑
{i: zi=α} 1 ∆

⌉
∆

. (19)

We see that (18) and (19) rely extensively on

Xm
α ,

∑
{i: zi=α}

(xi)
m, m ∈ {0, 1, 2}, α ∈ Z, (20)

the m’th moments of the portion of x where zi = α. We now have

a∗q(α) =

⌈
X1
α

X0
α

∆
⌉

∆
, (21)

da(x
n, zn) =

1

n

∑
α∈Z

{
X2
α − 2a∗q(α)X1

α + (a∗q(α))2X0
α

}
. (22)

With these definitions in place, the update of ∆da(b, a, z
n) in each iteration becomes rapid. During

an iteration, symbol zi = α changes to zi = α. We subtract (xi)
m from Xm

α and add (xi)
m to Xm

α′ , i.e.,

X
m
α = Xm

α − (xi)
m and X

m
α′ = Xm

α′ + (xi)
m, m ∈ {0, 1, 2}.

Given these updated values of Xm
α and Xm

α′ , computation of ∆da(b, a, z
n) = da(b, a, zn)− da(b, a, zn)

per (21) and (22) requires constant time per iteration. Pseudo-code for the adaptive alphabet Algorithm 2

appears below.
ALGORITHM 2: LOSSY ENCODER WITH ADAPTIVE REPRODUCTION ALPHABET

INPUT: xn ∈ Rn, Z , β, c, r, µ

OUTPUT: bit-stream

PROCEDURE:
1) Initialize z by quantizing x // can quantize with data-independent Y
2) Initialize mk(·, ·) and other data structures using z
3) for t = 1 to r do super-iteration
4) s← c log(t) for some c > 0 // inverse temperature
5) Draw permutation of numbers {1, . . . , n} at random
6) for t′ = 1 to n do
7) Let i be component t′ in permutation
8) for all α in Z do // evaluate possible changes to zi
9) Compute ∆da(b, a, z

n) via (15), (20), (21), and (22)
10) Compute fs(zi = α|zn\i) given in (14) // modified Gibbs distribution
11) Generate new zi using fs(zi = ·|zn\i) // Gibbs sampling
12) Update mk(·, ·)[·] and Xm

zi , m ∈ {0, 1, 2} // previous and new zi
13) Encode effective alphabet Ze
14) Encode a∗q(α) using µ log(log(n))|Ze| bits
15) Apply CTW to zn
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As for the data-independent reproduction alphabet case, Algorithm 2 requires O(nk|Z|) time to

compute ∆Hk(z
i−1bzni+1, a). Utilizing the computational techniques specified above, ∆da(b, a, z

n) can be

computed in constant time per inner loop of each iteration (Line 9), which requires O(n|Z|) = O(n|Y|)

computation per super-iteration. We see that computing ∆Hk(z
i−1bzni+1, a) should require more time

than computing ∆da(b, a, z
n); this was confirmed in our implementation.

We have also noticed empirically that Algorithm 2 often comes quite close to optimum RD performance

after a few dozen super-iterations, resulting in reasonable overall computational demands. Additionally, in

practice the effective alphabet Ze is often modest. CTW [36] converges to the empirical entropy as long

as kn = log(n)/ log(|Ze|)−Ωn(1), where the Ωn(1) term decays to 0 as n is increased, and for finite n

a smaller alphabet |Ze| allows CTW to converge to the empirical entropy for larger context depths kn.

Therefore, Algorithm 2 can optimize over deeper context trees, leading to improved compression and

faster convergence to the RD function.

The decoder of the adaptive reproduction alphabet Algorithm 2 resembles the decoder in [23]. First,

the bit-stream generated by CTW is decompressed to reconstruct zn. The actual real-valued reproduction

sequence is obtained by mapping from zn to yn via the adaptive quantizer a∗q(α), since the mapping a∗q

has been described to the decoder.

V. NUMERICAL RESULTS

To demonstrate the potential of our approach, we implemented the adaptive alphabet Algorithm 2

in Matlab; our code is available for download at http://people.engr.ncsu.edu/dzbaron/

software/RD_BaronWeissman/. Results for Laplace and autoregressive sources are provided.

Implementation details: We ran Algorithm 2 for sequences of length n = 1.5 · 104 using r = 50

super-iterations, and k ≈ 1
2 log|Z|(n). We found two heuristics to be useful. First, for each individual

compression problem and RD slope β the specific temperature evolution s = O(log(t)) may vary.

Therefore, for each point we ran four temperature evolution sequences and allowed each one to improve

over the energy εa(zn) computed with previous evolution sequences. Second, using a good starting point

helps Algorithm 2 converge. Therefore, we began running low rate problems with small β, and each

solution was used as a starting point for the next larger β.

Below we plot results averaging over 10 simulations. Each plot compares the MCMC approach over a

range of β values to entropy coding (ECSQ), results by Yang and Zhang [33], and the RD function. We

note in passing that the RD function of the Laplace source was computed numerically using the mapping

approach of Rose [35], and the RD function of the autoregressive source was computed analytically via
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water pouring [40].

Laplace source: We first evaluated an iid Laplace source with pdf f(x) = 1
2e
−|x| such that E[X] = 0

and var(X) = 2. For this source, entropy coding performs rather well. However, Yang and Zhang [33]

give better RD performance (Figure 1). Algorithm 2 improves further over the deterministic minimization

by Yang and Zhang [33], which requires availability of a training sequence. Although their algorithm

can be used in a universal setting by partitioning the input into blocks, Yang and Zhang mention that

this approach results in a performance loss of 0.2–0.3 dB [33].

Relying on the mapping approach of Rose [35], it can be shown that for low-to-medium rates a small

odd number of reproduction levels suffices to approach the fundamental RD limit of the Laplace source.

This approach maps the unit interval with Lebesgue measure to the reproduction space, and the codebook

optimization is over the mapping. When the Shannon lower bound is not tight, the mapping approach

boils down to an annealing process that tracks the location of the reproduction alphabet at different β. In

contrast, the Blahut-Arimoto algorithm [41, 42] optimizes the output distribution, and it approaches the

correct reproduction distribution only in the limit of high resolution. We have observed numerically that

the optimal mapping a∗(α) is similar to the reproduction alphabet computed by the mapping approach

of Rose [35]. This similarity suggests that applying Algorithm 1 to the “correct” finite alphabet would

not improve results by much.

Autoregressive source: Figure 2 illustrates the RD performance of the different algorithms for an

autoregressive (AR) source, where

xn = ρxn−1 + wn,

ρ = 0.9, and the innovation sequence wn ∼ N (0, 1) is zero mean unit norm iid Gaussian.

Entropy coding (ECSQ) is not well suited for non-iid sources; vector quantization [17], the deterministic

minimization algorithm by Yang and Zhang [33], and MCMC can be used instead. Note that ECSQ

appears in the upper right hand side of the figure; its RD performance is poor.

We plotted the RD performance of Algorithm 2 using a small reproduction alphabet (|Z| = 3) and a

moderately sized one (|Z| = 9). At low rates, the smaller alphabet offers better RD performance; as the

rate is increased, larger alphabets quantize the source more precisely. Although the compression results

of Yang and Zhang are better for the AR source than those of Algorithm 2, the algorithm of Yang and

Zhang is not universal.

It is interesting to note that the results of Figure 2 may seem a bit messy, in particular for |Z| = 9 the

results are not monotonic. This is explained by realizing that our second heuristic chooses as a starting
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Fig. 2. AR source: Comparison of entropy coding (ECSQ), average rate and distortion of Algorithm 2 (MCMC)

over 10 simulations, results by Yang and Zhang [33], and the RD function. (n = 1.5 · 104, |Z|∈ {3, 9}, r = 50,

k ≈ 1
2 log|Z|(n).)

point for each RD computation the previous RD point, and therefore while increasing β (decreasing

the distortion D) it is possible for both R and D to improve. In some cases the algorithm can improve

significantly over the heuristic starting point, yielding big reductions in distortion between adjacent points

(see the gap in D between 0.66 and 0.78) at the expense of extra rate.

VI. DISCUSSION

In this paper, we extended the MCMC simulated annealing approach of Jalali and Weissman [23] to

fixed-to-variable length compression of analog sources. We described two lossy compression algorithms

that asymptotically achieve the RD function universally for stationary ergodic continuous amplitude

sources. The first algorithm relies on a data-independent reproduction alphabet that samples a wider

interval with finer resolution as the input length is increased. However, the large alphabet slows down the

convergence to the RD function, and is an impediment in practice. Our second algorithm therefore uses

a (potentially smaller) adaptive reproduction alphabet. Not only is the adaptive algorithm theoretically
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motivated for iid sources by the discrete nature of the reproduction alphabet when the Shannon lower

bound is not tight [35], but our numerical results suggest that even for non-iid sources it works well

using a small alphabet. Additionally, the smaller alphabet accelerates the computation.

We opened the paper by mentioning that there is a significant gap between theory and practice, and

close the paper by asking where this paper is located on the theory–practice spectrum. The message of

the paper is that there is hope to go beyond entropy coding in a completely universal way and thus bypass

the vector quantizer paradigm, which requires training data. As mentioned after Theorem 2, in practice

one can only take as many iterations as the computational power affords. That said, for sufficiently large

block length n and number of super-iterations r, we come arbitrarily close to achieving the fundamental

compression limits of the source.

Applications: In applications such as image compression [2, 3], video compression [4], and speech

coding [5–7], our algorithms can process a vector of real-valued numbers whose statistics are either

completely unknown, or perhaps only known approximately. As an example, consider image coding. The

EQ coder [3] processes each sub-band of wavelets sequentially, going from low-frequency sub-bands and

proceeding toward high-frequency sub-bands. The EQ coder classifies wavelet coefficients in each sub-

band based on the magnitudes of parent coefficients, relying on the insight that the magnitudes of children

coefficients are correlated with the magnitudes of parents [43]. In a similar manner, our algorithms can

utilize the parent coefficients as contextual information. This approach should compress better than the

EQ coder, which assumes that the wavelet coefficients in each subband are independent conditioned on

parent coefficients, whereas our algorithm can account for dependencies between coefficients. We leave

the application of our algorithms to image coding for future work.

APPENDIX A. PROOF OF THEOREM 1

Continuous codebook: We begin by constructing a continuous amplitude RD codebook [14]. Given the

slope β of the RD function R(X,D), there exists an optimal rate R(X,β) and distortion level D(X,β).

For any ε1 > 0, fix the rate R = R(X,β) + ε1. The achievable RD coding theorem [13, 14] demonstrates

for the source X that in the limit of large n there exist codebooks whose rates are smaller than R and

whose expected per symbol distortions are less than D(X,β). We choose such a codebook C comprised

of at most 2Rn codewords, each of length n. The encoder maps xn to the nearest codeword cj in C and

transmits its index j. The decoder then maps index j to cj .

Quantized codebook: Now define a quantized codebook C such that cij , the i’th entry of the j’th

codeword of C, is generated by rounding cij , the i’th entry of the j’th codeword of C, to the closest value
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in Y . (Recall that −γ and γ are the smallest and largest values in Y , respectively.) Using C, the encoder

and decoder are identical, except that cij is used instead of cij . The quantized codebook C requires the

same rate as before.3 However, the distortion provided by the quantized codebook C is different.

Distortion of quantized codebook: To analyze the change in distortion, we consider three cases. In

the first case, the original codebook value is an outlier whereas the signal value xi is not, i.e., |cij | > γ

and |xi| ≤ γ. The truncation of |cij | to γ reduces the distortion,

d(xi, cij) = (xi − cij)2 < (xi − cij)2 = d(xi, cij).

The second case occurs when the original codebook and signal values are both outliers, i.e., |xi|, |cij | > γ.

As n→∞, the amount of variance beyond the increasing γ = dlog(n)e vanishes, E[(xi·1{|xi|>γ(n)})
2]
n→∞−→

0, because the source X has finite variance and γ increases (8). Therefore, for any δ1 > 0 there exists N1

such that for all n > N1 the increase in expected distortion dn(xn, yn) (1) due to truncation of outliers

is smaller than δ1. The third case occurs for |cij | ≤ γ, where rounding changes the square error from

(xi − cij)2 to (xi − cij)2, and the distortion changes by

(xi − cij)2 − (xi − cij)2 = (cij)
2 − (cij)

2 + 2xi(cij − cij)

= (cij − cij)(2xi − cij − cij)

= (cij − cij) [2(xi − cij) + (cij − cij)] .

Because |cij − cij | ≤ 1
2γ (8), the change in distortion is upper bounded as follows,

|(xi − cij)2 − (xi − cij)2| ≤ |xi − cij |
γ

+
1

4γ2
.

We now define sets of indices that relate to the three cases,

I1 , {i : i ∈ {1, . . . , n}, |cij | > γ, |xi| ≤ γ},

I2 , {i : i ∈ {1, . . . , n}, |xi|, |cij | > γ},

I3 , {i : i ∈ {1, . . . , n}, |cij | ≤ γ}.

3By quantizing cj to cj , different cj could yield identical codewords in C; this would allow to reduce the rate.
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Summarizing over all i ∈ {1, . . . , n}, and taking expectation over the input xn and codeword cj ,

E [ndn(xn, cj)] = E

[
n∑
i=1

(xi − cij)2

]

= E

[(∑
i∈I1

(xi − cij)2

)
+

(∑
i∈I2

(xi − cij)2

)
+

(∑
i∈I3

(xi − cij)2

)]

≤ E

[∑
i∈I1

(xi − cij)2

]
+ E

[∑
i∈I2

(xi − cij)2 + nδ1

]

+E

[∑
i∈I3

(xi − cij)2 +
|xi − cij |

γ
+

1

4γ2

]
(23)

≤ nE [dn(xn, cj)] + nδ1 +
E [‖xn − cj‖1]

γ
+

n

4γ2
, (24)

where cj and cj are the j’th codewords of C and C, respectively, ‖·‖1 denotes the `1 norm, the inequality

in (23) relies on the changes in distortion in the three different cases, and the inequality in (24) is

due to the γ terms related to I3 that do not appear for I1 and I2. Because E[dn(xn, cj)] ≤ D and

‖xn − cj‖1 ≤ n
√
dn(xn, cj), we have via Jensen’s inequality that E[‖xn − cj‖1] ≤ n

√
D. Therefore,

E[dn(xn, cj)] < D + δ1 +

√
D

γ
+

1

4γ2
= D + δ1 +

√
D

dlog(n)e
+

1

4dlog(n)e2
. (25)

Because γ = dlog(n)e increases with n,

E[d(xn, cj)] ≤ D + 2δ1. (26)

Therefore, the quantized codebook C approaches the RD function asymptotically for the continuous

amplitude source X .

Lossless compression using CTW: Having demonstrated that there exists a codebook based on the

finite alphabet C that asymptotically achieves the RD function, we need to prove that the RD performance

of C can be approached by compressing x̂n losslessly using CTW [36]. The remainder of the proof borrows

from the prior art on lossy compression of finite sources [22, 44]. Owing to the linearity of expectation,

E

[
1

n
|CTW (x̂n)| − βd(xn, x̂n)

]
= E

[
1

n
|CTW (x̂n)| −Hk(x̂n)

]
+ E

[
Hk(x̂n)− βd(xn, x̂n)

]
. (27)

Recall that k = kn = o(log(n)), and so for any ε2 > 0 there exists N2 such that for all n > N2 CTW

converges to the empirical entropy [36],

E

[
1

n
|CTW (x̂n)| −Hk(x̂n)

]
< ε2, (28)
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as long as kn = log(n)/ log(|Y|) − Ωn(1). Jalali and Weissman [44] invoke Gray et al. [45] to prove

that for any δ2 > 0 and ε3 > 0 there exists a process X̃ that is jointly stationary and ergodic with X

such that

E
[
Hk(x̂n)− βd(xn, x̂n)

]
≤ E

[
Hk(x̃n)− βd(xn, x̃n)

]
(29)

≤ H(X̃0|X̃−1
−k) + ε3 − E

[
βd(xn, x̃n)

]
(30)

≤ R(X,D) + ε4 + ε3 − β(D(β) + δ2), (31)

where (29) relies on the definition of x̂n (6), (30) is explained by observing that Hk(x̃n) converges to

H(X̃0|X̃−1
−k) with probability one as kn is increased, and (31) uses properties of X̃ , i.e., H(X̃0|X̃−1

−k) ≤

R(X,D) + ε4 and E
[
βd(xn, x̃n)

]
≤ D(β) + δ2. Note also that R(X,D) relies implicitly on β, and is

identical to the R(β) mentioned earlier. We complete the proof by combining (26), (27), (28), (31), and

the arbitrariness of δ1, δ2, ε2, ε3, and ε4 �

APPENDIX B. PROOF OF THEOREM 2

In light of Theorem 1, we need only prove that MCMC converges in distribution to the set of minimal

energy solutions. To prove this, we rely on the closely related proof by by Jalali and Weissman [44,

Appendix B], and we only outline the arguments here. While the algorithm is running, ynr takes one of

|Y|n possible values. These values are modeled as states of a Markov chain with |Y|n states. There is

a sufficiently positive probability to transition between any two states, because c < c1 and each super-

iteration of Algorithm 1 processes all n locations of yn. Therefore, as long as the temperature is reduced

slowly enough (because c < c1), the probability to transition between any two states is high enough to

prevent getting locked into a local minimum, and the distribution of ynr converges toward the stationary

distribution of the Markov chain. The proof is completed by noting that at low temperatures the minimal-

energy states occupy all the probabilistic mass of the stationary distribution, and the stationary distribution

consists of these states. Therefore, ynr converges in distribution to the set of minimal energy solutions,

and we enjoy the same RD performance as in Theorem 1. �

APPENDIX C. PROOF OF THEOREM 3

The proof is similar to the proofs of Theorems 1 and 2. Consider the sequence ẑn with globally

minimal modified energy (12),

ẑn , arg min
wn∈Zn

εa(w
n). (32)
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We first employ arguments from Appendix A to prove that ẑn achieves the RD function asymptotically.

Next, we prove that simulated annealing [34] converges to the globally optimal solution asymptotically.

Achievable for global minimum: Recall that the adaptive algorithm uses Z with cardinality |Z| = |Y|.

Consider Appendix A, which proves that the globally optimal data-independent reproduction alphabet

solution x̂n achieves the RD function asymptotically. Because |Z| = |Y|, there exists a one to one

mapping from Y to Z , and x̂n is mapped to some z̃n. The optimal a∗(·) may reduce the distortion,

dn(xn, a∗(ẑn)) ≤ dn(xn, x̂n).

Although the quantized version a∗q(·) may increase the distortion, i.e.,

da(x
n, ẑn) = dn(xn, a∗q(ẑ

n)) ≥ dn(xn, a∗(ẑn)),

allocating µ log(log(n)) bits to encode each a∗q(α) is sufficient to guarantee that the quantization error

is smaller than 1
γ (see the proof of Theorem 1 in Appendix A). Our previous derivations (24), (25), (26)

show that for any δ > 0 the overall distortion da(xn, ẑn) becomes δ-close to D(γ) as n is increased. We

conclude from the definitions of energy (4) and modified adaptive energy (12) that

εa(ẑn) ≤ ε(x̂n) + nβδ + µ log(log(n))|Y|.

Because |Y| = O(log2(n)), the last term due to encoding the quantized a∗q(·) vanishes relative to nβδ.

Taking δ as small as we want enables to approach minD≥0[R(X,D)− βD] as closely as needed,

lim sup
n→∞

E

[
1

n
|CTW (ẑn)| − βda(xn, ẑn)

]
≤ min

D≥0
[R(X,D)− βD].

Invoking the converse result of Yang et al. [22, 33],

E

[
1

n
|CTW (ẑn)| − βda(xn, ẑn)

]
n→∞−→ min

D≥0
[R(X,D)− βD].

Simulated annealing: The proof is similar to that in Appendix B. The only noteworthy point is that

for each zn the quantized a∗q(·) is a deterministic function of zn. Therefore, the simulated annealing

can again be posed as a Markov chain over |Z|n states, where convergence in distribution to the set

of minimal energy solutions is obtained by recognizing that for c < c2 there is a sufficiently positive

probability to transition between any two states. Therefore, the Markov chain does not get stuck in a

local minimum, and instead it converges toward the stationary distribution of the Markov chain, which

at low temperatures consists entirely of minimal-energy states. �
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