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ABSTRACT
Noisy compressed sensing deals with the estimation of a sys-
tem input from its noise-corrupted linear measurements. The
performance of the estimation is usually quantified by some
standard error metric such as squared error or support error. In
this paper, we consider a noisy compressed sensing problem
with any arbitrary error metric. We propose a simple, fast, and
general algorithm that estimates the original signal by mini-
mizing an arbitrary error metric defined by the user. We ver-
ify that, owing to the decoupling principle, our algorithm is
optimal, and we describe a general method to compute the
fundamental information-theoretic performance limit for any
well-defined error metric. We provide an example where the
metric is absolute error and give the theoretical performance
limit for it. The experimental results show that our algorithm
outperforms methods such as relaxed belief propagation, and
reaches the suggested theoretical limit for our example error
metric.

Index Terms— Belief propagation, compressed sensing,
error metric, estimation theory

1. INTRODUCTION

Consider a linear system,
w = Φx, (1)

where the system input x ∈ RN is independent and iden-
tically distributed (i.i.d.), and the random linear mixing ma-
trix [1] Φ ∈ RM×N is known, where typically M < N .
The vector w ∈ RM is called the measurement of x, and is
passed through a bank of separable channels characterized by
the conditional distributions,

fY|W(y|w) =

M∏
i=1

fY|W(yi|wi). (2)

Note that the channels are general and are not restricted to
Gaussian. We observe the channel output y, and want to esti-
mate the original input signal x from y and Φ.

The performance of the estimation is often characterized
by some error metric that quantifies the distance between the

estimated and the original signals. For a signal x and its es-
timate x̂, both of length N , the error between them is the
summation over the component-wise errors,

D(x̂,x) =

N∑
i=1

d(x̂i, xi). (3)

Squared error is most commonly used as the error metric
in estimation problems with the same or similar model de-
scribed by (1) and (2). Mean-square optimal analysis and al-
gorithms were introduced in [2–6] to estimate the original sig-
nal from Gaussian-noise corrupted measurements; in [1, 7, 8],
further discussions were made given the circumstances where
the output channel was arbitrary, while, again, the minimum
mean square error (MMSE) estimator was put forth. Sup-
port recovery error is another metric of great importance, for
example it relates to properties of the measurement matri-
ces [9]. The authors of [9, 10] discussed the support error
rate when recovering a sparse signal from its noisy measure-
ments; support-related performance metrics were applied in
the derivations of theoretical bounds on the sampling rate for
signal recovery [11]. The readers may notice that previous
work only paid attention to limited types of error metrics.
What if absolute error, cubic error, or other non-standard met-
rics are required in a certain application?

In this paper (i) we suggest an estimation algorithm that
minimizes an arbitrary error metric; and (ii) we prove that the
algorithm is optimal and study the best possible performance
of an estimator for a given error metric. This algorithm ap-
plies the relaxed belief propagation (BP) method [1, 3] and
the decoupling principle [2, 4, 5, 7]. Furthermore, it is sim-
ple and fast, and it reconstructs the original signal based on
minimizing the conditional expected error metric required by
the users. This is convenient for users who desire to recover
the original signal with an arbitrary non-standard error metric.
Some simulation results show that our method outperforms
algorithms such as the relaxed BP described in [1], which is
optimal for squared error. Moreover, we compare our algo-
rithm with the suggested theoretical limit for minimum mean
absolute error (MMAE), and illustrate that our algorithm is
optimal.



2. REVIEW OF RELAXED BELIEF PROPAGATION

Before describing the estimation algorithm, a review of the
relaxed BP method [1, 3] is helpful.

Belief Propagation (BP) [12] is an iterative method used
to compute the marginals of a Bayesian network. The method
is based on a bipartite graph, called Tanner or factor graph,
which consists of nodes and edges that represent the random
variables and their relations. The marginals of the variables
are computed by passing messages through nodes. In relaxed
BP [3], means and variances of the variables serve as the mes-
sages passed through nodes in the Tanner graph. As a result,
the mean and variance of x conditioned on y and Φ are ob-
tained. In [1, 7], this method was extended to a more general
case where the channel is not necessarily Gaussian.

An important result for BP in compressed sensing is that it
decouples the linear mixed channels (2) to a series of parallel
scalar Gaussian channels [2, 4, 5, 7]. In other words, the in-
put signal x passing through the linear mixing system (1), (2)
is equivalent to each input entry xj passing through a scalar
Gaussian channel:

qj = xj + vj , for i = 1, 2, 3, ..., N, (4)

where each channel’s additive Gaussian noise vj is N (0, µ)
distributed, and µ satisfies the fixed point equation discussed
in [2, 4, 5, 8, 13, 14].

3. ESTIMATION ALGORITHM

3.1. Algorithm

We use four terms in our algorithm: (i) a distribution function
fX(x), the prior of the original input x; (ii) a vector q =
(q1, q2, ..., qN ), the outputs of the scalar Gaussian channels;
(iii) a scalar µ, the variance of the Gaussian noise in (4); and
(iv) an error metric function D(x̂,x) specified by the user.

Now that we know that the scalar channels have addi-
tive Gaussian noise, and that the variances of the noise are µ,
we can compute the conditional probability density function
fX|Q(x|q) immediately from Bayes’ rule.

Given an error metricD(x̂,x), the optimal estimation x̂opt
is generated by minimizing the conditional expectation of the
error metric E[D(x̂,x)|q], which is easy to compute using
fX|Q(x|q):

E[D(x̂,x)|q] =
∫
D(x̂,x)fX|Q(x|q)dx

=

∫
D(x̂,x)

1√
(2πµ)N

exp

(
−‖q− x‖2

2µ

)
dx. (5)

Then,

x̂opt = argmin
x̂

∫
D(x̂,x)fX|Q(x|q)dx. (6)

Under a condition that D(x̂,x) is continuous and differen-
tiable almost everywhere, we simply take the derivative of

(5), set it equal to zero, and solve for x̂opt,

∂
∫
D(x̂,x)fX|Q(x|q)dx

∂x̂

∣∣∣∣
x̂=x̂opt

= 0. (7)

Since both the error metric function D(x̂,x) and the condi-
tional probability fX|Q(x|q) are separable, the problem re-
duces to scalar estimation [15].

3.2. Theoretical results

Having discussed the algorithm, we now give a theoretical
justification for its performance. Note that the decoupling
principle that we use in our proofs is based on the replica
method in statistical physics, and is not rigorous [2]. There-
fore, our results are given as claims.

Claim 1. Given the system model described by (1), (2) and an
error metric D(x̂,x) of the form defined by (3), the optimal
estimation of the input signal is given by

x̂opt = argmin
x̂
E [D(x̂,x)|q] , (8)

where the vector q is the output of the decoupled Gaussian
scalar channel (4).

Proof. From the main result in [2], linear mixed channels can
be decoupled to a bank of scalar Gaussian channels qi =
xi + vi where vi ∼ N (0, µ) for i ∈ {1, 2, ..., N}. Then,
fXi|Y(xi|y) gives the same distribution as fXi|Qi

(xi|qi). In
other words, once we know the value of µ, estimating each xi
from all channel outputs y = (y1, y2, ..., yM ) is equivalent to
estimating xi from the corresponding scalar channel output
qi. Therefore, an estimator based on minimizing the condi-
tional expectation of the error metric, E (D(x̂,x)|q), gives
the best possible result.

Following Claim 1, we immediately get the optimal per-
formance limit for any error metric D(x̂opt,x).

Claim 2. With the optimal estimator x̂opt determined by (6),
the minimum mean user-defined error (MMUE) is given by
the form shown in (9), where R(·) represents the range of a
variable.



MMUE(fX, µ) = E[D(x̂opt,x)] =

∫
R(Q)

(∫
R(X)

D(x̂opt,x)

(
1√

(2πµ)N
exp

(
−‖q− x‖2

2µ

))
fX(x)dx

)
dq. (9)

Proof.

MMUE(fX, µ) = E[D(x̂opt,x)]

=

∫
R(Q)

EQ

[
E[D(x̂opt,x)|q]

]
dq

=

∫
R(Q)

E[D(x̂opt,x)|q]f(q)dq

=

∫
R(Q)

(∫
R(X)

D(x̂opt,x)f(x|q)dx

)
f(q)dq

=

∫
R(Q)

(∫
R(X)

D(x̂opt,x)
f(q|x)f(x)

f(q)
dx

)
f(q)dq

=

∫
R(Q)

∫
R(X)

D(x̂opt,x)
1√

(2πµ)N
exp

(
− (q− x)2

2µ

)
fX(x)dxdq.

3.3. Example

We now provide an example of absolute error, in order to il-
lustrate how our approach can be utilized for specific error
metrics.

Since the minimum mean square error (MMSE) estimator
is the mean of the conditional distribution, the outliers in the
set of data may corrupt the estimation, and in this case the
minimum mean absolute error (MMAE), which is the median
of the data, is a good alternative.

The error metric function (3) for absolute error (AE) is
defined as

dAE(x̂i, xi) = |x̂i − xi|. (10)

The estimator x̂i,MMAE that minimizes E [dAE(x̂i, xi)|qi] is
such that∫ x̂i,MMAE

−∞
f(xi|qi)dxi =

∫ +∞

x̂i,MMAE

f(xi|qi)dxi =
1

2
.

Then, the conditional mean absolute error is,

E[ |x̂i,MMAE − xi|| qi]

=

∫ +∞

−∞
|x̂i,MMAE − xi|f(xi|qi)dxi

=

∫ x̂i,MMAE

−∞
(−xi)f(xi|qi)dxi +

∫ +∞

x̂i,MMAE

xif(xi|qi)dxi.

Therefore, the MMAE for location i, MMAEi(fXi , µ), is

MMAEi(fXi
, µ) = E[|x̂i,MMAE − xi|]

=

∫ +∞

−∞
E[ |x̂i,MMAE − xi|| qi]f(qi)dqi

=

∫ +∞

−∞

∫ x̂i,MMAE

−∞
(−xi)f(xi|qi)dxif(qi)dqi

+

∫ +∞

−∞

∫ +∞

x̂i,MMAE

xif(xi|qi)dxif(qi)dqi, (11)

where the integrations are evaluated numerically.
Since the input x is i.i.d., and the decoupled scalar chan-

nels have the same parameter µ, the values of MMAEi for all
i ∈ {1, 2, ..., N} are the same, and the overall MMAE is

MMAE(fX, µ) = N ·MMAEi(fXi , µ). (12)

4. NUMERICAL SIMULATIONS

Some experimental results are shown in this section in order
to illustrate the performance of our estimation algorithm when
minimizing a user-defined error metric.

We test our estimation algorithm on a linear system mod-
eled by (1) and (2), where the input is sparse Gaussian and
the channel is Gaussian. The input’s length N is 10,000, and
its sparsity rate is 3%, meaning that the entries of the input
vector are non-zero with probability 3%, and are zero oth-
erwise. The matrix Φ we use is Bernoulli-0.5 distributed,
and is normalized to have unit-norm rows. The non-zero in-
put entries are N (0, 1) distributed, and the Gaussian noise is
N (0, 0.003) distributed, i.e., the signal to noise ratio (SNR) is
20dB. Keep in mind that the channels (2) are in general form,
and we provide a Gaussian channel example for brevity.

In order to illustrate that our estimation algorithm is suit-
able for reasonable error metrics, we considered absolute er-
ror and two other non-standard metrics:

Errorp =

N∑
j=1

|x̂j − xj |p, (13)

where p = 0.5 or 1.5.
In Figure 1, lines marked with “metric-optimal” present

the error of our estimation algorithm, and lines marked with
“Relaxed BP” show the error of the relaxed BP algorithm
[1]. Each point in the figure is an average of 40 experiments
with the same parameters. It is clear that our algorithm out-
performs relaxed BP, especially for mean absolute error and
Error0.5.
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Fig. 1. Comparison of the metric-optimal estimation algo-
rithm and the relaxed BP algorithm.
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Fig. 2. Comparison of our minimum mean absolute error
(MMAE) estimator and the theoretical limit (12).

To demonstrate the theoretical analysis of our algorithm in
Section 3, we compare our MMAE estimator results with the
theoretical performance limit (12) in Figure 2, where the in-
tegrations (11) are computed numerically. In the figure, each
point on the “metric-optimal” line is also generated by averag-
ing 40 experiments. It is shown that our estimation algorithm
reaches the limit and is thus optimal.
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