Complexity-Adaptive Universal Signal Estimation for Compressed Sensing

Junan Zhu,* Dror Baron,* and Marco F. Duarte§

Motivation

Noisy compressed sensing (CS) [1]

• Goal: reconstruct x given y and Φ

Conventional CS algorithms

- Assume sparsity or compressibility
- Need prior knowledge about signal structure

What if prior knowledge not available?

Universal CS algorithms

• Focus on recovery of stationary ergodic non-i.i.d. signals with unknown statistics

Background

Universal MAP estimation [2]

- $x_{MAP} = \arg \max_{v} f_X(v) f_{Y|X}(y|v) = \arg \min_{v} \Psi^X(v)$
- $\Psi^{X}(v) = -\ln(f_{X}(v)) + \frac{||y \Phi v||_{2}^{2}}{2\sigma_{z}^{2}}$; optimal risk: $\Psi^{X}(x_{MAP})$
- Work on discretized space to reduce complexity
 - 1. Map indices $j \in \{1, ..., Z\}$ to \mathbb{R} via discretizer Q(j)
 - 2. Estimate v = Q(w), $w = [w_1, ..., w_N] \in \{1, ..., Z\}^N$
- Universal prior [3] $P_U(w) = 2^{-H_Q(w)}$
- q-depth conditional empirical entropy $H_q(w)$ [4]

• Objective function $\Psi^{Hq}(w) = NH_q(w) + \frac{||y - \Phi Q(w)||_2^2}{2\sigma_z^2 \times \ln(2)}$

MCMC and enhancements

Markov chain Monte Carlo (MCMC) [2,4]

- Boltzmann PMF $p_s(w) = \frac{1}{\zeta_s} \exp(-s\Psi^{H_q}(w))$
- Generate random samples with Gibbs sampler
- Iteration: Process one entry of w with Gibbs sampler
- Super-iteration: Process all entries of w

Does it reconstruct signals well?

• No, fixed quantizer slows down convergence

How to minimize l_2 error with fixed number of levels?

Level-adaptive (LA-MCMC) [2]

• $Q_{opt} = \arg\min_{\bar{Q}} ||y - \Phi \bar{Q}(w)||_2^2$

How many levels to use?

Merge / Add levels

Horizontal lines are levels; circle radius reflects population of level

Size-and level-adaptive MCMC (SLA-MCMC)

LA(r): run LA-MCMC for r super-iterations; D1 holds if current objective function better than before; D2 holds if newly added level(s) is (are) populated

Numerical results

Experimental settings:

- Compare SLA-MCMC with LA-MCMC, CoSaMP, and turboGAMP
- Signal length *N*=10000, *M*=2000-7000, AWGN
- SNR=5 and 10 dB
- Error metric: Mean signal-to-distortion ratio

$$MSDR = 10 \log_{10} \frac{Var(x)}{MSE}$$

SLA-MCMC estimation results for a four-state Markov switching source (generates pattern +1,+1,-1,-1,+1,+1,-1,... with 3% glitches)

SLA-MCMC, LA-MCMC, turboGAMP, and CoSaMP estimation results for a two-state Markov source with non-zero entries drawn from a uniform distribution U[0,1]

References and acknowledgements

Thanks to NSF and ARO for generous support

Journal submission available at http://arxiv.org/pdf/1204.2611

- [1] D. Donoho, "Compressed sensing," *IEEE Trans. Inf. Theory*, vol. 52, no. 4, pp. 1289–1306, Apr. 2006.
- [2] D. Baron and M. F. Duarte, "Universal MAP estimation in compressed sensing," in *Proc. 49th Annual Allerton Conf. Comm., Control, Computing*, Sep. 2011.
- [3] J. Rissanen, "A universal data compression system," *IEEE Trans. Inf. Theory*, vol. 29, no. 5, pp. 656–664, Sept. 1983.
- [4] S. Jalali and T. Weissman, "Block and sliding-block lossy compression via MCMC," *IEEE Trans. Comm.*, vol. 60, no. 8, pp. 2187–2198, Aug. 2012.