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Abstract—We study the compressed sensing (CS) estimation
problem where an input is measured via a linear matrix mul-
tiplication under additive noise. While this setup usually assumes
sparsity or compressibility in the observed signal during recovery,
the signal structure that can be leveraged is often not known a
priori. In this paper, we consider universal CS recovery, where
the statistics of a stationary ergodic signal source are estimated
simultaneously with the signal itself. We provide initial theoretical,
algorithmic, and experimental evidence based on maximum a
posteriori (MAP) estimation that shows the promise of universality
in CS, particularly for low-complexity sources that do not exhibit
standard sparsity or compressibility.

I. INTRODUCTION

Since many systems in science and engineering are approx-
imately linear, linear inverse problems have attracted great
attention in the signal processing community. A signal x ∈ RN
is recorded via a linear operator under additive noise:

y = Φx+ z, (1)

where Φ is an M × N matrix, and z ∈ RN denotes the
noise. The goal is to estimate x from the measurements y given
knowledge of Φ and a model for the noise z. When M � N , the
setup is known as compressed sensing (CS) and the estimation
problem is commonly referred to as recovery or reconstruction;
by posing a sparsity or compressibility requirement on the signal
and using it as a prior during recovery, it is indeed possible to
accurately estimate x from y [1, 2].

While in CS the acquisition can be designed independently
of the particular signal prior through the use of randomized
measurement matrices Φ, the majority of (if not all) existing
recovery algorithms require knowledge of the sparsity structure
of x, i.e., the choice of transformation that renders a sparse
coefficient vector for the signal. The large majority of recovery
algorithms pose an algebraic prior on the signal x. A second,
separate class of Bayesian CS recovery algorithms poses a prob-
abilistic prior on x, albeit still requiring a sparsity promoting
model for the coefficients of x in a known transform domain [3–
5]. In contrast, complexity-based regularization methods can use
arbitrary prior information on the signal model and come with
analytical guarantees, but are only computationally efficient for
specific signal models, such as the independent-entry Laplacian
model [6]. As a fourth alternative, there exist algorithms that
can formulate dictionaries that yield sparse representations for
the signals of interest when a large amount of training data is
available [7–9].

In certain cases, one might not be certain about the structure
or statistics of the source prior to recovery. It would nonetheless
be desirable to formulate algorithms to estimate x that are
universal to the particular statistics of the signal [10–12]. In
this paper, we make an initial contribution in this direction by
formulating an algorithm for recovery of arbitrary stationary
ergodic sources of low complexity. In contrast to the existing CS
recovery literature, our algorithm does not necessarily require
the standard sparsity or compressibility prior. Instead, our
approach is inspired by the Kolmogorov sampler (KS) [13, 14],
a universal denoising algorithm. Both our approach and KS are
based on the minimization of the Kolmogorov complexity [15–
17] of a source, which can be accurately estimated for signals
of interest via the empirical entropy. Our minimization is
regularized by introducing a log likelihood for the noise model,
which is equivalent to the standard least squares under additive
white Gaussian noise.

While our work is only an initial effort in the direction of
universal estimation, we make several different contributions
in this paper. First, we show that the maximum a posteriori
(MAP) risk of an estimator based on a specific quantization
grid converges asymptotically to the risk of the classical (known
statistics) MAP estimator. Second, we propose a recovery
algorithm based on Markov chain Monte Carlo (MCMC) to
approximate this estimation procedure. We believe that for
a sufficiently large number of randomized measurements and
for well-behaved sources, the output of our MCMC recovery
algorithm based on a universal prior converges in the limit of
increased runtime to the correct MAP estimate; a proof of this
result is part of ongoing work. Third, we identify computational
bottlenecks in the implementation of our MCMC estimator
and show approaches to solve them at low computational
complexity. Fourth, we showcase encouraging experimental
results that show recovery performance for a variety of types
of signal structures (or statistics) that meets or exceeds that
of the popular `1-norm minimization. For example, Fig. 1
illustrates recovery results from Gaussian measurement matrices
for a four-state Markov source of length N = 10000 that
generates the pattern +1,+1,−1,−1,+1,+1,−1,−1 . . . with
3% errors in state transitions, resulting in the signal switching
from -1 to +1 or vice-versa either too early or too late. While
it is well known that sparsity-promoting recovery algorithms
such as `1-norm minimization can recover sparse sources from
linear measurements, the aforementioned switching source is
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Fig. 1. Universal MCMC and `1-norm minimization recovery results
for the four-state Markov switching source of length N = 10000
as a function of the number of Gaussian random measurements M
for different SNR values. MCMC significantly outperforms `1-norm
minimization, which fails due to the signal not being sparse in a fixed
basis. Each point in the graph represents average performance over 25
signal and random measurement matrix draws.

not sparse in a foreknown basis, rendering such algorithms
not applicable. In contrast, our MCMC recovery algorithm
estimates this source with high fidelity when the signal to noise
ratio (SNR) is sufficiently large and a moderate number of
measurements M is available. Our experimental results also
show some challenges faced by MCMC recovery of certain
classes of sparse signals; we identify properties of the algorithm
that cause these challenges, which remain to be addressed.

This paper is organized as follows. Section II provides
background content. Section III overviews MAP estimation
and quantization, and Section IV introduces universal MAP
estimation. Section V formulates concrete MCMC algorithms
for universal MAP estimation, and Section VI presents initial
experimental results. We conclude with the proof of our main
theoretical result in the appendix.

II. BACKGROUND AND RELATED WORK

A. Compressed Sensing

Consider the noisy measurement setup via a linear operator
(1). The input vector x ∈ RN is generated by a stationary
and ergodic source X . The distribution fX that generates X is
unknown. The matrix Φ ∈ RM×N has independent and identi-
cally distributed (i.i.d.) Gaussian entries, Φ(m,n) ∼ N (0, 1

M ).1

These moments ensure that columns of the matrix have unit
norm on average. For concrete analysis, we assume the noise
z ∈ RM to be i.i.d. Gaussian, with zero-mean and known
variance σ2

Z for simplicity. Other noise distributions are readily
supported.

We focus on the setting where M,N → ∞ and the aspect
ratio is positive,

δ , lim
N→∞

M

N
> 0. (2)

Similar settings have been discussed in the literature, e.g., [18–
22]. Since x was generated by an unknown source, we must

1In contrast to our analytical and numerical results, the algorithm presented
in Section V is not dependent on a particular choice for the matrix Φ.

search for an estimation mechanism that is agnostic to the
specific distribution fX .

B. Quantization

Define the set of data-independent reproduction levels for
quantizing x as

R ,
{
. . . ,− 1

γ
, 0,

1

γ
, . . .

}
, (3)

where γ = dln(N)e. As N increases, R will quantize x to
a greater resolution. In Section III, we will show that under
suitable conditions on fX , performing maximum a posteriori
(MAP) estimation over the discrete alphabet R asymptotically
converges to the MAP estimate over the continuous distribution
fX . This reduces the complexity of the estimation problem from
continuous to discrete, albeit still infinite. In Section IV, we
describe an estimation approach that reduces the complexity of
the problem from infinite to finite.

C. Related work

For a scalar channel, e.g., Φ = I and y = x + z, Donoho
proposed the the Kolmogorov sampler (KS) for denoising [13],

xKS , arg max
w

K(w) s.t. ‖w − y‖2 < τ (4)

where K(x) denotes the Kolmogorov complexity of x, defined
as the length of the shortest input to a Turing machine [23] that
generates the output x and then halts, and τ = Nσ2

Z controls for
the presence of noise. It can be shown that K(x) asymptotically
captures the statistics of the stationary ergodic source X , and the
per-symbol complexity achieves the entropy rate H , H(X),
i.e., limN→∞

1
NK(x) = H almost surely. Noting that universal

lossless compression algorithms [10, 11] achieve the entropy
rate for any discrete-valued finite state machine source X , we
see that these algorithms achieve the per-symbol Kolmogorov
complexity almost surely.

Donoho et al. expanded KS to the linear CS measurement
setting y = Φx but did not consider measurement noise [14].
Inspired by Donoho et al., we estimate x from noisy measure-
ments y using the empirical entropy as a proxy for the KS.

III. MAP ESTIMATION AND DISCRETIZATION

In this section, we assume for exposition that we know
the input statistics fX . Given the measurements y, the MAP
estimator for x has the form

xMAP , arg max
w

fX(w)fY |X(y|w). (5)

Because z is i.i.d. Gaussian with mean zero and known variance
σ2
Z ,

fY |X(y|w) = c1e
−c2‖y−Φw‖2 , (6)

where c1 = (2πσ2
Z)−M/2 and c2 = 1

2σ2
Z

are constants and ‖ · ‖
denotes the Euclidean norm. Plugging into (5) and taking log
likelihoods, we obtain

xMAP = arg min
w

ΨX(w),

where ΨX(·) denotes the objective function (risk)

ΨX(w) , − ln(fX(w)) + c2‖y − Φw‖2; (7)



our ideal risk would be ΨX(xMAP ).
Instead of performing continuous-valued MAP estimation, we

optimize for the MAP in the discretized domain RN . We begin
with a technical condition on the input.

Condition 1: We require that the probability density has
bounded derivatives ∣∣∣∣ ddxn ln(fX(x))

∣∣∣∣ < ρ, (8)

where d
dxn

is the derivative with respect to (w.r.t.) entry n of
x, n ∈ {1, . . . , N}, and ρ > 0.

Let x̃MAP be the quantization bin in RN nearest to xMAP .
Condition 1 ensures that a small perturbation from xMAP to
x̃MAP does not change ln(fX(·)) by much. We use this fact
to prove that ΨX(x̃MAP ) is sufficiently close to ΨX(xMAP )
asymptotically.

Theorem 1: Let Φ ∈ RM×N be an i.i.d. Gaussian measure-
ment matrix where each entry has mean zero and variance 1

M .
Suppose that Condition 1 holds and the aspect ratio δ > 0 in (2),
and let the noise z ∈ RM be i.i.d. zero-mean Gaussian. Then
for all ε > 0, the quantized x̃MAP satisfies

ΨX(xMAP ) ≤ ΨX(x̃MAP ) < ΨX(xMAP ) +Nε

almost surely as N →∞.
Theorem 1 is proved in the Appendix; it shows that in terms

of the MAP objective function, x̃MAP is near-optimal almost
surely asymptotically. Thus, it is natural to perform the MAP
optimization directly in the quantized domain:

xMAP (R) , arg min
w∈RN

ΨX(w). (9)

From Theorem 1, we have

ΨX(xMAP (R)) ≤ ΨX(x̃MAP ) ≤ ΨX(xMAP ) +Nε (10)

almost surely asymptotically for any ε > 0.
Discrete probability space: Now that we have set up a

quantization grid RN for x, we convert the distribution fX
to a probability mass function (PMF) pX over RN . Let

fR ,
∑
w∈RN

fX(w),

and define the PMF pX(·) as

pX(w) ,
fX(w)

fR
. (11)

We now have

min
w∈RN

(
− ln(pX(w)) + c2‖y − Φw‖2

)
= ΨX(xMAP (R)) + ln(fR). (12)

The additive constant ln(fR) can be ignored during the MAP
optimization over RN , so that (9) gives the MAP estimate of
x over RN due to (12).

IV. UNIVERSAL MAP ESTIMATION

In [13], Donoho showed that for the scalar channel y = x+z:
(i) the Kolmogorov sampler xKS (4) is drawn from the posterior
distribution pX|Y (x|y); and (ii) the mean square error (MSE)
of this estimate EX [‖y−xKS‖2] is equal to twice the minimum
mean squared error (MMSE).

Given that Theorem 1 shows that the risk penalty due to
quantization vanishes asymptotically in N , we now describe a
Kolmogorov-inspired estimator for CS over a quantized grid.
Consider a universal prior pU [10, 11] that might involve
Kolmogorov complexity [15–17], e.g., pU (w) = 2−K(w). The
universal prior has the fortuitous property that for every sta-
tionary ergodic source X and fixed ε > 0, there exists some
minimal N0(X, ε) such that

− ln(pU (w)) < − ln(pX(w)) + εN (13)

for all w ∈ RN and N > N0(X, ε) [10, 11]. We optimize over
an objective function (risk) that incorporates pU :

ΨU (w) , − ln(pU (w)) + c2‖y − Φw‖2, (14)

resulting in

xUMAP , arg min
w∈RN

ΨU (w). (15)

We now present a conjecture on the quality of the reconstruction
xUMAP ; experimental evidence to assess this claim is presented
in Section VI.

Conjecture 1: Assume that the conditions of Theorem 1
hold. Then for all ε > 0, the mean squared error of the universal
MAP estimator xUMAP satisfies

E[(X −XU
MAP )2] < 2E[(X − E[X|Y,Φ])2] +Nε

for large N .
A limitation of our data-independent reproduction levels (3)

is that R has infinite cardinality. One approach to circumvent
this problem is to add a second technical condition that upper
bounds fX(x) by an exponentially decaying function. Subject
to this condition, there exists an integer c3 > 1 such that a finite
set of reproduction levels

RF ,
{
−c3γ

2

γ
,−c3γ

2 − 1

γ
, . . . ,

c3γ
2

γ

}
(16)

will quantize a broad range of values of x with the probability
that any |xi| > c3γ being sufficiently small. This finite quan-
tization step reduces the complexity of the estimation problem
from infinite to combinatorial.

V. ALGORITHMIC APPROACH

Although the results of the previous section are theoretically
appealing, a brute force optimization of xUMAP is computation-
ally intractable. Instead, we propose an algorithmic approach
based on Markov chain Monte Carlo (MCMC) methods [24].
Our approach is reminiscent of the framework by Weissman et
al. and Yang et al. for lossy data compression [25–27].



A. Universal compressor

We propose a universal lossless compression formulation
following the conventions of Weissman et al. [25, 26]. Our goal
is to characterize − log(pU (w)), cf. (14). To do so, we use
empirical entropy [28], which for stationary ergodic sources
is identical to the per-symbol Kolmogorov complexity almost
surely (cf. Section II-C).

To define the empirical entropy, let us first define the empir-
ical symbol counts:

nq(w,α)[β] , |{i ∈ [q + 1, N ] : wi−1
i−q = α,wi = β}|, (17)

where q is the context depth [11, 29], β ∈ RF , α ∈ RqF , and
wji is the string comprising symbols i through j within w. We
now define the order q conditional empirical probability for the
context α as

pq(w,α)[β] ,
nq(w,α)[β]∑

β′∈RF nq(w,α)[β′]
, (18)

and the order q conditional empirical entropy,

Hq(w) , − 1

N

∑
α∈RqF ,β∈RF

nq(w,α)[β] log (pq(w,α)[β]) .

(19)
Allowing the context depth q = o(log(N)) to grow slowly

with N , various universal compression algorithms can achieve
the empirical entropy Hq(·) asymptotically [11, 29]. On the
other hand, no compressor can outperform the entropy rate.
Additionally, for large N the empirical symbol counts with
context depth q provide a sufficiently precise characterization
of the source statistics. Therefore, Hq provides a concise
approximation to the per-symbol coding length of a universal
compressor.

B. Markov chain Monte Carlo

Having approximated the coding length, we now describe
how to optimize our objective function. We employ the MCMC
approach [24], where the space w ∈ RNF is analogous to
a statistical mechanical system, and at low temperatures the
system tends toward low energies. Pseudocode for our MCMC
approach appears in Algorithm 1.

We define the energy ε(w) in an analogous manner to ΨU (w),
using Hq(w) as our universal coding length (14):

ε(w) , NHq(w) + c4‖y − Φw‖2, (20)

where c4 = c2 log2(e). The minimization of energy by MCMC
is analogous to minimizing ΨU (w). The Boltzmann PMF is
then defined as

ps(w) ,
1

ζs
exp(−sε(w)), (21)

where s > 0 is inversely related to temperature in simulated
annealing and ζs is a normalization constant.

Ideally, our goal is to compute the globally minimum energy
solution

xUMAP , arg min
w∈RNF

ε(w). (22)

We use a stochastic Markov chain Monte Carlo (MCMC)
relaxation [24] to approximate the globally minimum solution.

Algorithm 1 MCMC for Universal CS
1: Inputs: Initial point x∗ ∈ Rn, RF , σ2

Z , r, c
2: Outputs: Approximation w of xUMAP

3: Initialize w by quantizing x∗ to RNF
4: Initialize nq(w,α)[β], ∀ α ∈ RqF , β ∈ RF
5: for t = 1 to r do // super-iteration
6: s← c log(t) for some c > 0
7: Draw permutation {1, . . . , N} at random
8: for t′ = 1 to N do // iteration
9: Let n be component t′ in permutation

10: for all β in RF do // possible new wn
11: Compute ∆Hq(w, n, β, wn)
12: Compute ∆d(w, n, β, wn)
13: Compute ps(wn = β|w\n)
14: end for
15: Generate wn using ps(·|w\n) // Gibbs
16: Update nq(w,α)[β], ∀ α ∈ RqF , β ∈ RF
17: end for
18: end for
19: return w

During the minimization process, we refer to the approximation
as w.

MCMC samples from the Boltzmann PMF (21) using a Gibbs
sampler: in each iteration, a single element wn is generated
while the rest of w, w\n , {wi : n 6= i}, remains unchanged.
We denote by wn−1

1 βwNn+1 the concatenation of the initial
portion of the output vector wn−1

1 , the symbol β ∈ RF , and the
latter portion of the output wNn+1. The Gibbs sampler updates
wn by resampling from the PMF:

ps(wn = a|w\n)

=
exp

(
−sε(wn−1

1 awNn+1)
)∑

b exp
(
−sε(wn−1

1 bwNn+1)
) (23)

=
1∑

b exp (−s [N∆Hq(w, n, b, a) + c4∆d(w, n, b, a)])
,

where

∆Hq(w, n, b, a) , Hq(w
n−1
1 bwNn+1)−Hq(w

n−1
1 awNn+1)

is the change in empirical entropy Hq(w) (19) when wn = a
is replaced by b, and

∆d(w, n, b, a) (24)
, ‖y − Φ(wn−1

1 bwNn+1)‖2 − ‖y − Φ(wn−1
1 awNn+1)‖2

is the change in ‖y − Φw‖2 when wn = a is replaced by b.
At low temperatures, i.e., large s, a small difference in energy

ε(w) drives a big difference in probability. Therefore, we begin
at a high temperature where the Gibbs sampler can freely move
around RNF . As the temperature is reduced, the PMF becomes
more sensitive to changes in energy (21), and the trend toward
w with lower energy grows stronger. In each iteration, the Gibbs
sampler modifies wn in a random manner that resembles heat
bath concepts in statistical physics. Although MCMC could
sink into a local minimum, we decrease the temperature slowly
enough that the randomness of Gibbs sampling eventually drives



MCMC out of the local minimum toward the globally optimal
xUMAP .

We refer to the processing of a single location as an iteration
and group the processing of the N different entries of w,
randomly permuted, into super-iterations. During the simulated
annealing, in super-iteration t we use inverse temperature s =
c log(t) [24, 25]. The constant c plays a crucial role. If c is
large, then the Boltzmann distribution (21) favors low-energy
sequences too greedily, and the algorithm might get stuck in
local minima. On the other hand, we conjecture that there exists
a universal constant c5 such that for c < c5 the algorithm
approaches the global minimum in the limit of infinitely many
iterations. To argue why w will tend toward minimum energy,
observe that Algorithm 1 optimizes over |RF |n possible out-
puts. As long as c < c5, there is a sufficiently large probability
to transition between any two outputs, and Algorithm 1 will
likely not get bogged down in a local minimum. Based on
related work [24, 25], we conjecture that as we process more
super-iterations t, w converges in distribution to the set of
minimal energy solutions, which includes xUMAP (22) since
large s favors low-energy w.

C. Computational challenges

Studying the pseudocode of Algorithm 1, we recognize that
Lines 11–13 must be implemented efficiently, as they run
rN |RF | times. Lines 11 and 12 are especially challenging.

For Line 11, a naive update of ∆Hq(w, n, b, a) has complex-
ity O(|RF |q+1), cf. (19). To address this problem, Jalali and
Weissman [25] recompute the empirical conditional entropy in
O(q|RF |) time only for the O(q) contexts whose corresponding
counts are modified [25]. The same approach can be used in
Line 16, reducing computation from O(|RF |q+1) to O(q|RF |).

We now focus on computation of ∆d(w, n, b, wn) in Line 12.
Define v = y − Φw. From (24) we get

∆d(w, n, b, wn)

=

M∑
m=1

[
(vm − Φmn(b− wn))2 − (vm)2

]
=

M∑
m=1

[
2vmΦmn(wn − b) + (Φmn(wn − b))2

]
=2(wn − b)〈v,Φn〉+ (wn − b)2‖Φn‖2,

where Φn is column n of Φ. By pre-computing the inner
product 〈v,Φn〉 and squared `2 norm ‖Φn‖2, Line 12 can be
implemented in constant time. Seeing that the inner product
and squared `2 norm require O(M) time, which is aggregated
over |RF | calls per iteration to Line 12, ∆d(w, n, b, a) requires
O(Nr(M + |RF |)) time in total. Combined with the compu-
tation for Line 11, and utilizing that M � q|RF |2 in practice,
the entire runtime of our algorithm is O(rMN).

D. Adaptive reproduction levels

While Algorithm 1 is a first step toward universal CS, it
suffers from a large number of reproduction levels |RF |. In
order to meet a target performance level, N must be large
enough to ensure that RF quantizes a broad enough range of

values of R finely enough to represent the (estimated) x̂ well.
For finite N , estimation performance using the reproduction
levels (16) could suffer.

To estimate better with finite N , we utilize reproduction
levels that are adaptive instead of the fixed levels in RF . To
do so, instead of w ∈ RNF we optimize over u ∈ ZN . The
new alphabet Z does not directly correspond to real numbers.
Instead, there is an adaptive mapping A : Z → R. Considering
the energy function (20), we now compute the empirical symbol
counts nq(u, α)[β], order q conditional empirical probabilities
pq(u, α)[β], and order q conditional empirical entropy Hq(u)
using u ∈ ZN , α ∈ Zq , and β ∈ Z , cf. (17), (18),
and (19). Similarly, we use ‖y−ΦA(u)‖2 instead of ‖y−Φw‖2,
where A(u) is the straightforward vector extension of A. These
modifications yield an adaptive energy function

εa(u) , NHq(u) + c4‖y − ΦA(u)‖2.

We choose Aopt to optimize for squared `2 error,

Aopt , arg min
A

[
M∑
m=1

(ym − [ΦA(u)]m)2

]
,

where [ΦA(u)]m denotes the mth entry of the vector ΦA(u).
The optimal mapping depends entirely on y, Φ, and u. From a
coding perspective, describing Aopt(u) requires Hq(u) bits for
u and |Z|b log log(N) bits for Aopt to match the resolution
of the nonadaptive alphabet RF , with b > 1 an arbitrary
constant. The resulting coding length is our universal prior; it
approximates the Kolmogorov complexity K(Aopt(u)).

Optimization of reproduction levels: We now describe the
optimization procedure for Aopt, which must be computation-
ally efficient. Write

Υ(A) ,
M∑
m=1

(
ym −

N∑
n=1

ΦmnA(un)

)2

.

For Υ(A) to be minimal, we need zero-valued derivatives.

dΥ(A)

dA(β)
= −2

M∑
m=1

(
ym −

N∑
n=1

ΦmnA(un)

)(
N∑
n=1

Φmn1{un=β}

)
= 0, ∀ β ∈ Z. (25)

Define the location sets

Lβ , {n : 1 ≤ n ≤ N, un = β}

for each β ∈ Z , and rewrite the derivatives of Υ(A),

dΥ(A)

dA(β)
= −2

M∑
m=1

(
ym −

∑
λ∈Z

∑
n∈Lλ

ΦmnA(λ)

)∑
n∈Lβ

Φmn

 .

Let the per-character averaged column values be

µmβ ,
∑
n∈Lβ

Φmn, (26)

for each m ∈ {1, . . . ,M} and β ∈ Z . We desire the derivatives
to be zero, cf. (25):

0 =

M∑
m=1

(
ym −

∑
λ∈Z

A(λ)µmλ

)
µmβ .



Thus, we must satisfy the system of equations,
M∑
m=1

ymµmβ =

M∑
m=1

(∑
λ∈Z

A(λ)µmλ

)
µmβ

for each β ∈ Z . We can write the right hand side of each of
these equations as

M∑
m=1

(∑
λ∈Z

A(λ)µmλ

)
µmβ

=
∑
λ∈Z

A(λ)

M∑
m=1

µmλµmβ ,

for each β ∈ Z . The system of equations can be described in
matrix form (28). Note that by writing µ as a matrix with entries
indexed by row m and column β given by (26), we can write
Ω as a Gram matrix, Ω = µTµ, and we also have Θ = µT y.
The optimal A can be computed as a |Z| × 1 vector

Aopt = Ω−1Θ

if the |Z| × |Z| matrix Ω is invertible. We have found that
numerical stability is improved by regularizing Ω. Note also
that

‖y − ΦA(u)‖2 =

M∑
m=1

(ym −
∑
β

µmβAopt(β))2
, (27)

which can be computed in O(M |Z|) time instead of O(MN).
Computational complexity: Pseudocode for the adaptive re-

production level estimation appears as Algorithm 2. We discuss
computational requirements for each line of the pseudocode that
is run in each iteration of the inner loop.
• In Line 13, the differences in empirical conditional entropy

can be computed in O(q|Z|) time as demonstrated by Jalali
and Weissman [25].

• In Line 14, we update µmβ for m ∈ {1, . . . ,M} in O(M)
time.

• Line 15 updates Ω. Because we only need to update
O(1) columns and O(1) rows, each such column and row
contains O(|Z|) entries, and each entry is a sum over
O(M) terms, we need O(M |Z|) time.

• Line 16 requires to invert Ω in O(|Z|3) time.
• Line 17 requires O(M |Z|) time, cf. (27).
• Line 18 requires O(|Z|) time.

In practice we typically have M � |Z|2, and so the aggregate
complexity is O(rMN |Z|), which is greater than the compu-
tational complexity of the fixed reproduction level Algorithm 1
by a factor of O(|Z|).

VI. NUMERICAL RESULTS

We implemented universal MCMC estimation (Algorithm 2)
in Matlab and tested it using several stationary ergodic sources.
Our code is available for download at http://people.engr.ncsu.
edu/dzbaron/software/UCS BaronDuarte/.2 We chose an alpha-
bet of size |Z| = 7 for all sources tested. For each source,

2Shortly before publication, we noticed a mismatch between the constant c4
in (20) and that used in our implementation. We expect to update the code
online accordingly in the near future.

Algorithm 2 MCMC with Adaptive Levels
1: Inputs: Initial point x∗ ∈ Rn, Z , σ2

Z , r, c
2: Outputs: Approximation A(u) of xUMAP

3: Initialize u and A from x∗ and Z
4: Initialize nq(u, α)[β], ∀ α ∈ Zq , β ∈ Z
5: Initialize µmβ , ∀ m ∈ {1, . . . ,M}, β ∈ Z
6: Initialize Ω
7: for t = 1 to r do // super-iteration
8: s← c log(t) for some c > 0
9: Draw permutation {1, . . . , N} at random

10: for t′ = 1 to N do // iteration
11: Let n be component t′ in permutation
12: for all β in Z do // possible new un
13: Compute ∆Hq(u, n, β, un)
14: Compute µmβ ,∀ m ∈ {1, . . . ,M}
15: Update Ω
16: Compute Aopt // invert Ω
17: Compute ‖y − ΦA(un−1

1 βuNn+1)‖2
18: Compute ps(un = β|u\n)
19: end for
20: ũn ← un // save previous value
21: Generate un using ps(·|u\n) // Gibbs
22: Update nq(·)[·] at O(q) relevant locations
23: Update µmβ , ∀ m, β ∈ {un, ũn}
24: Update Ω // O(1) rows and columns
25: end for
26: end for
27: return A(u)

inputs x of length N = 10000 were generated. Each such x
was multiplied by a random Gaussian matrix Φ. We then added
measurement noise z whose variance was selected to ensure
that the signal to noise ratio (SNR) was 2, 6, 10, or 14 dB.
We compared the performance of universal MCMC estimation
starting from an initial estimate x∗ = ΦT y to that of `1-norm
minimization recovery; for each value of M and SNR, we
average the performance of each algorithm over 25 draws of
x, Φ, and z. Although MCMC was slower than the `1-norm
minimizer used in our simulations [30], its runtime of several
minutes was nonetheless reasonable.

Results for the switching source (Fig. 1) were highlighted in
Section I, where it is seen that MCMC performs well while `1-
norm minimization fails due to the input not being canonically
sparse.

Next we examined three sources for sparse signals whose
sparse support (the locations of the nonzero entries) was gen-
erated by a two state Markov state machine (nonzero and
zero valued states). The transition from zero to nonzero state
for adjacent entries has probability 3

970 , while the transition
from nonzero to zero state for adjacent entries has probability
10%; these parameters yield 3% sparsity on average. The three
sources considered differed in the distribution of the nonzero
values; all three sources were 3% sparse on average, and `1-
norm minimization offered reasonable recovery performance.

For our first two-state Markov source, the nonzeros were set



Ω︷ ︸︸ ︷
∑M
m=1 µmβ1µmβ1 . . .

∑M
m=1 µmβ|Z|µmβ1

...
. . .

...∑M
m=1 µmβ1

µmβ|Z| . . .
∑M
m=1 µmβ|Z|µmβ|Z|


 A(β1)

...
A(β|Z|)

 =

θ︷ ︸︸ ︷
∑M
m=1 ymµmβ1

...∑M
m=1 ymµmβ|Z|

 . (28)
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Fig. 2. Universal MCMC and `1-norm minimization recovery re-
sults for a two-state Markov source with nonzero entries drawn from
a Rademacher distribution as a function of the number of Gaussian
random measurements M for different SNR values. MCMC outper-
forms `1-norm minimization for most cases shown, with the surprising
exception of SNR = 14dB.

to a constant value +1; such signal structure has low entropy,
and MCMC consistently outperformed `1 as expected; we do
not include the results due to space limitations.

For our second two-state Markov source, the nonzeros were
drawn from a Rademacher distribution, i.e., uniform over
{−1,+1} (Fig. 2). Here, universal MCMC estimation per-
formed well for low to moderate SNR. Surprisingly, MCMC
failed for high SNR. To study this behavior, we note that
for high SNR the constant c2 in (6) is large, and the Gibbs
sampler (23) is strongly motivated to minimize the quadratic
term ‖y−ΦA(u)‖2 while accommodating larger values for the
empirical entropies Hq , which in turn allows for more complex
sources to be used in the estimate. Such behavior within the
universal MCMC algorithm will push its estimates away from
the low-complexity priors that we seek to promote, and is
expected to appear for any particular input source once the
SNR is sufficiently high. We plan to further study this behavior
in light of the parameters of the Gibbs sampler, including the
choice of initial point x∗.

For our third two-state Markov source featuring nonzero
values following a uniform distribution U [0, 1] (Fig. 3), MCMC
performed poorly. The problem we saw during execution is that
the adaptive alphabetA spends many of the representation levels
in Z on zero-valued entries of the signal, and only one level
for the nonzeros, which leads to poor quantization. We noticed
that the quantization step for the initial estimate x∗ in Step 3 of
Algorithm 2 pushes us away from convergence. We conjecture
that a key hurdle is the calculation of an adaptive quantizer A
that is suitable for a variety of sources.

Our last source generates the entries of the signal by draw-
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Fig. 3. Universal MCMC and `1-norm minimization recovery results
for a two-state Markov source with nonzero entries drawn from a
uniform distribution U [0, 1] as a function of the number of Gaussian
random measurements M for different SNR values. The performance of
universal MCMC estimation is hampered likely due to the continuous-
valued nature of the source studied.

ing them independently from a Bernoulli distribution, where
each xn was +1 with probability 3%; else xn was zero.
For this source, MCMC outperforms `1-norm minimization,
except when the number of measurements M is low. We also
compared the performance of the two algorithms to the MMSE
achievable in the Bayesian regime with known statistics [5];
similar computations were performed by Guo and Verdu [20].
Interestingly, the squared error achieved by MCMC is thrice the
MMSE. One is left to wonder whether we could approach the
mean squared error bound given in Conjecture 1 in the limit of
infinitely many super-iterations.

APPENDIX. PROOF OF THEOREM 1

The lower bound ΨX(xMAP ) ≤ ΨX(x̃MAP ) is trivial,
because xMAP is the MAP solution. For the upper bound,

‖y − Φx̃MAP ‖
≤ ‖y − ΦxMAP ‖+ ‖Φ(xMAP − x̃MAP )‖
≤ ‖y − ΦxMAP ‖+ ‖Φ‖‖xMAP − x̃MAP ‖
≤ ‖y − ΦxMAP ‖+ ‖Φ‖

√
N‖xMAP − x̃MAP ‖∞ (29)

≤ ‖y − ΦxMAP ‖+A

√
N

2dln(N)e
, (30)

where the `∞ norm in (29) isolates the largest absolute dif-
ference between xMAP and x̃MAP , which is O(log(N)−1)
(3), and A is the spectral norm of Φ. For the distribution we
assumed for the matrix Φ, A = 1+δ−0.5 = O(1) almost surely
asymptotically [31], where δ is the aspect ratio (2). Observe that
‖y − ΦxMAP ‖ = O(

√
N), because the per-element signal to

noise ratio of the measurement process (1) is finite. Substituting
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Fig. 4. Universal MCMC and `1-norm minimization recovery results
for a source with i.i.d. Bernoulli entries with nonzero probability of 3%
as a function of the number of Gaussian random measurements M for
different SNR values. MCMC outperforms `1-norm minimization for a
sufficiently large number of measurements M .

this observation into (30),

‖y − Φx̃MAP ‖2

≤

(
‖y − ΦxMAP ‖+O

( √
N

log(N)

))2

= ‖y − ΦxMAP ‖2 +O

(
N

log(N)

)
= ‖y − ΦxMAP ‖2 + o(N) (31)

almost surely asymptotically. That is, discretization doesn’t
change the noise hypothesized by the MAP estimator by much.

We now show that ln(fX(x̃MAP )) is similar to
ln(fX(xMAP )). Owing to our reproduction levels (3),

‖xMAP − x̃MAP ‖1 ≤ O
(

N

log(N)

)
.

Because the log derivatives of fX are bounded, cf. (8),

| ln(fX(x̃MAP ))− ln(fX(xMAP ))|
< ρ‖xMAP − x̃MAP ‖1 = o(N). (32)

Combining (7), (31), and (32), we see that ΨX(x̃MAP ) −
ΨX(xMAP ) = o(N) almost surely asymptotically. �
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